3 research outputs found
Predictive CDN Selection for Video Delivery Based on LSTM Network Performance Forecasts and Cost-Effective Trade-Offs
Owing to increasing consumption of video streams and demand for higher quality content and more advanced displays, future telecommunication networks are expected to outperform current networks in terms of key performance indicators (KPIs). Currently, content delivery networks (CDNs) are used to enhance media availability and delivery performance across the Internet in a cost-effective manner. The proliferation of CDN vendors and business models allows the content provider (CP) to use multiple CDN providers simultaneously. However, extreme concurrency dynamics can affect CDN capacity, causing performance degradation and outages, while overestimated demand affects costs. 5G standardization communities envision advanced network functions executing video analytics to enhance or boost media services. Network accelerators are required to enforce CDN resilience and efficient utilization of CDN assets. In this regard, this study investigates a cost-effective service to dynamically select the CDN for each session and video segment at the Media Server, without any modification to the video streaming pipeline being required. This service performs time series forecasts by employing a Long Short-Term Memory (LSTM) network to process real time measurements coming from connected video players. This service also ensures reliable and cost-effective content delivery through proactive selection of the CDN that fits with performance and business constraints. To this end, the proposed service predicts the number of players that can be served by each CDN at each time; then, it switches the required players between CDNs to keep the (Quality of Service) QoS rates or to reduce the CP's operational expenditure (OPEX). The proposed solution is evaluated by a real server, CDNs, and players and delivering dynamic adaptive streaming over HTTP (MPEG-DASH), where clients are notified to switch to another CDN through a standard MPEG-DASH media presentation description (MPD) update mechanismThis work was supported in part by the EC projects Fed4Fire+, under Grant 732638 (H2020-ICT-13-2016, Research and Innovation Action), and in part by Open-VERSO project (Red Cervera Program, Spanish Government's Centre for the Development of Industrial Technology
Coverage optimization and power reduction in SFN using simulated annealing
An approach that predicts the propagation, models the terrestrial receivers and optimizes the performance of single frequency networks (SFN) for digital video broadcasting in terms of the final coverage achieved over any geographical region, enhancing the most populated areas, is proposed in this paper. The effective coverage improvement and thus, the self-interference reduction in the SFN is accomplished by optimizing the internal static delays, sector antenna gain, and both azimuth and elevation orientation for every transmitter within the network using the heuristic simulated annealing (SA) algorithm. Decimation and elevation filtering techniques have been considered and applied to reduce the computational cost of the SA-based approach, including results that demonstrate the improvements achieved. Further representative results for two SFN in different scenarios considering the effect on the final coverage of optimizing any of the transmitter parameters previously outlined or a combination of some of them are reported and discussed in order to show both, the performance of the method and how increasing gradually the complexity of the model for the transmitters leads to more realistic and accurate results.This work was supported by the Spanish Ministry of Science and Innovation under Projects TEC2008-02730 and TEC2012-33321. The work of M. Lanza and Á. L. Gutiérrez was supported by a Pre-Doctoral Grant from the University of Cantabria
Receiver,transmitter, transmission system and methods for receiving and transmitting messages
A receiver comprising a receive unit, wherein the receiver is configured to receive a signal. The signal comprises a coded message representing a message, commonly coded using an FEC code with such a correlated decoded message is decodable upon receipt of a subportion in time of the coded message or upon receipt of the subportions of different transmissions of the coded message. If there is a sequence of different transmissions associated with a message, a counter indicating the position of the respective transmission of sequences not commonly coded where the message is associated with the respective transmission. Moreover, the receiver is configured to switch on the receive unit for a time period long enough to obtain the subportion or subportions of the coded message and to decode the coded message