12 research outputs found

    Loop recognition and copper-mediated disulfide reduction underpin metal site assembly of CuA in human cytochrome oxidase

    Get PDF
    Maturation of cytochrome oxidases is a complex process requiring assembly of several subunits and adequate uptake of the metal cofactors. Two orthologous Sco proteins (Sco1 and Sco2) are essential for the correct assembly of the dicopper CuA site in the human oxidase, but their function is not fully understood. Here, we report an in vitro biochemical study that shows that Sco1 is a metallochaperone that selectively transfers Cu(I) ions based on loop recognition, whereas Sco2 is a copper-dependent thiol reductase of the cysteine ligands in the oxidase. Copper binding to Sco2 is essential to elicit its redox function and as a guardian of the reduced state of its own cysteine residues in the oxidizing environment of the mitochondrial intermembrane space (IMS). These results provide a detailed molecular mechanism for CuA assembly, suggesting that copper and redox homeostasis are intimately linked in the mitochondrion.Fil: Morgada, Marcos Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Abriata, Luciano Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Cefaro, Chiara. Fondazione Farmacogenomica FiorGen Onlus; ItaliaFil: Gajda, Karolina. University of Florence; ItaliaFil: Banci, Lucia. Fondazione Farmacogenomica FiorGen Onlus; Italia. University of Florence; ItaliaFil: Vila, Alejandro Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentin

    The role of molecular crowding in long-range metalloprotein electron transfer: Dissection into site- and scaffold-specific contributions

    Get PDF
    Here we report the effect of molecular crowding on long-range protein electron transfer (ET) and disentangle the specific responses of the redox site and the protein milieu. To this end, we studied two different one-electron redox proteins that share the cupredoxin fold but differ in the metal center, T1 mononuclear blue copper and binuclear CuA, and generated chimeras with hybrid properties by incorporating different T1 centers within the CuA scaffold or by swapping loops between orthologous proteins from different organisms to perturb the CuA site. The heterogeneous ET kinetics of the different proteins was studied by protein film electrochemistry at variable electronic couplings and in the presence of two different crowding agents. The results reveal a strong frictional control of the ET reactions, which for 10 Å tunnelling distances results in a 90% drop of the ET rate when viscosity is matched to that of the mitochondrial interior (ca. 55 cP) by addition of either crowding agent. The effect is ascribed to the dynamical coupling of the metal site and the milieu, which for T1 is found to be twice stronger than for CuA, and the activation energy of protein-solvent motion that is dictated by the overall scaffold. This work highlights the need of explicitly considering molecular crowding effects in protein ET.Fil: Zitare, Ulises Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Szuster, Jonathan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Scocozza, Magali Franca. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Espinoza Cara, Andrés Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Leguto, Alcides José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Morgada, Marcos Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Vila, Alejandro Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Murgida, Daniel Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentin

    Formation and electronic structure of an atypical Cu A site

    Get PDF
    PmoD, a recently discovered protein from methane-oxidizing bacteria, forms a homodimer with a dicopper CuA center at the dimer interface. Although the optical and electron paramagnetic resonance (EPR) spectroscopic signatures of the PmoD CuA bear similarities to those of canonical CuA sites, there are also some puzzling differences. Here we have characterized the rapid formation (seconds) and slow decay (hours) of this homodimeric CuA site to two mononuclear Cu2+ sites, as well as its electronic and geometric structure, using stopped-flow optical and advanced paramagnetic resonance spectroscopies. PmoD CuA formation occurs rapidly and involves a short-lived intermediate with a max of 360 nm. Unlike other CuA sites, the PmoD CuA is unstable, decaying to two type 2 Cu2+ centers. Surprisingly, NMR data indicate that the PmoD CuA has a pure σu∗ ground state rather than the typical equilibrium between σu∗ and πu of all other CuA proteins. EPR, ENDOR, ESEEM, and HYSCORE data indicate the presence of two histidine and two cysteine ligands coordinating the CuA core in a highly symmetrical fashion. This report significantly expands the diversity and understanding of known CuA sites.Fil: Ross, Matthew O.. Northwestern University; Estados UnidosFil: Fisher, Oriana S.. Northwestern University; Estados UnidosFil: Morgada, Marcos Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Krzyaniak, Matthew D.. Northwestern University; Estados UnidosFil: Wasielewski, Michael R.. Northwestern University; Estados UnidosFil: Vila, Alejandro Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Hoffman, Brian M.. Northwestern University; Estados UnidosFil: Rosenzweig, Amy C.. Northwestern University; Estados Unido

    The mitochondrial Cu+ transporter PiC2 (SLC25A3) is a target of MTF1 and contributes to the development of skeletal muscle in vitro

    Get PDF
    The loading of copper (Cu) into cytochrome c oxidase (COX) in mitochondria is essential for energy production in cells. Extensive studies have been performed to characterize mitochondrial cuproenzymes that contribute to the metallation of COX, such as Sco1, Sco2, and Cox17. However, limited information is available on the upstream mechanism of Cu transport and delivery to mitochondria, especially through Cu-impermeable membranes, in mammalian cells. The mitochondrial phosphate transporter SLC25A3, also known as PiC2, binds Cu+ and transports the ion through these membranes in eukaryotic cells, ultimately aiding in the metallation of COX. We used the well-established differentiation model of primary myoblasts derived from mouse satellite cells, wherein Cu availability is necessary for growth and maturation, and showed that PiC2 is a target of MTF1, and its expression is both induced during myogenesis and favored by Cu supplementation. PiC2 deletion using CRISPR/Cas9 showed that the transporter is required for proliferation and differentiation of primary myoblasts, as both processes are delayed upon PiC2 knock-out. The effects of PiC2 deletion were rescued by the addition of Cu to the growth medium, implying the deleterious effects of PiC2 knockout in myoblasts may be in part due to a failure to deliver sufficient Cu to the mitochondria, which can be compensated by other mitochondrial cuproproteins. Co-localization and co-immunoprecipitation of PiC2 and COX also suggest that PiC2 may participate upstream in the copper delivery chain into COX, as verified by in vitro Cu+-transfer experiments. These data indicate an important role for PiC2 in both the delivery of Cu to the mitochondria and COX, favoring the differentiation of primary myoblasts.Fil: McCann, Cat. Wesleyan University; Estados UnidosFil: Quinteros, Michael. Wesleyan University; Estados UnidosFil: Adelugba, Ifeoluwa. University of Massachussets; Estados UnidosFil: Morgada, Marcos Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Castelblanco, Aida R.. Skidmore College; Estados UnidosFil: Davis, Emily J.. Skidmore College; Estados UnidosFil: Lanzirotti, Antonio. University of Chicago; Estados UnidosFil: Hainer, Sarah J.. University of Pittsburgh; Estados UnidosFil: Vila, Alejandro Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Navea, Juan G.. Skidmore College; Estados UnidosFil: Padilla-Benavides, Teresita. Wesleyan University; Estados Unido

    Estudio estructural e interacción proteína-proteína de Metalochaperonas Mitocondriales

    No full text
    El cobre es un metal de transición esencial para la sobrevida de muchos organismos. Es un cofactor importante para proteínas que catalizan procesos fundamentales dentro de las células. Sin embargo fallas en el control de los niveles del mismo pueden desencadenar procesos tóxicos como la reacción de Fenton o la unión de estos iones a sitios proteicos adventicios que llevan a la pérdida de función enzimática de las proteínas afectadas. Debido a esta dualidad esencialidad/toxicidad, las células han generado distintos mecanismos para regular los niveles de cobre de manera de minimizar los efectos tóxicos. Estos mecanismos incluyen la compartimentalización de los iones cobre, la producción metalotioneínas o el bombeo del exceso al espacio extracelular. Un rol fundamental en este proceso de homeostasis lo cumplen proteínas metalochaperonas que unen Cu(I) dentro de las células y lo transfieren de manera específica para la activación de las proteínas que lo emplean como cofactor. En la mitocondria sólo dos proteínas requieren iones cobre para su función. La Cu-Zn superóxido-dismutasa mitocondrial (SOD) que tiene actividad detoxificante y la citocromo c oxidasa (COX) involucrada en el proceso de fosforilación oxidativa. La activación de SOD se da mediante su metalochaperona específica CCS mientras que COX requiere iones cobre para la formación del centro [...]Fil: Morgada, Marcos Nicolás. Universidad Nacional del Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Celular y Molecular de Rosario (IBR-CONICET); Argentina

    Dynamical effects in metalloprotein heterogeneous electron transfer

    No full text
    In this work we assess the influence of physiological viscosities on metalloprotein electron transfer reactions. To that end we investigated the direct electrochemistry of the copper proteins azurin and CuA adsorbed on SAM-coated electrodes. The experimental results show a change of ET regime from nonadiabatic to friction control upon shortening tunneling distances, which is paralleled by a sigmoidal increase of the apparent ET reorganization energies. These data could be accurately described using novel Matyushov?s model, thereby validating this recent theoretical development, which however did not describe viscosity effects in its original formulation. We demonstrate that ET rate constants and effective relaxation times vary with viscosity following power laws. Moreover, the crossover parameter g that determines the ET regime could be redefined in terms of the exponents of these power laws. The magnitude of g, i.e. the extent of frictional control, was found to be protein specific as it is determined by the dynamical features of the protein milieu. Interestingly, Stokes shift and diffusional relaxation times were found to be of similar magnitude, thus resulting in non-negligible frictional control even at tunneling distances as long as 19 Å, and this effect is amplified by physiologically high viscosities, thus highlighting the influence of intracellular macromolecular crowding in modulating protein ET reactions.Fil: Zitare, Ulises Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Szuster, Jonathan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Santalla, María C.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Morgada, Marcos Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Vila, Alejandro Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Murgida, Daniel Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentin

    Arabidopsis thaliana Hcc1 is a Sco-like metallochaperone for Cu A assembly in Cytochrome c Oxidase

    No full text
    The assembly of the CuA site in Cytochrome c Oxidase (COX) is a critical step for aerobic respiration in COX-dependent organisms. Several gene products have been associated with the assembly of this copper site, the most conserved of them belonging to the Sco family of proteins, which have been shown to perform different roles in different organisms. Plants express two orthologs of Sco proteins: Hcc1 and Hcc2. Hcc1 is known to be essential for plant development and for COX maturation, but its precise function has not been addressed until now. Here, we report the biochemical, structural and functional characterization of Arabidopsis thaliana Hcc1 protein (here renamed Sco1). We solved the crystal structure of the Cu+1-bound soluble domain of this protein, revealing a tri coordinated environment involving a CxxxCxnH motif. We show that AtSco1 is able to work as a copper metallochaperone, inserting two Cu+1 ions into the CuA site in a model of CoxII. We also show that AtSco1 does not act as a thiol-disulfide oxido-reductase. Overall, this information sheds new light on the biochemistry of Sco proteins, highlighting the diversity of functions among them despite their high structural similarities.Fil: Llases, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Lisa, María Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina. Plataforma de Biología Estructural y Metabolómica; ArgentinaFil: Morgada, Marcos Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Giannini, Estefanía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Biológica; ArgentinaFil: Alzari, Pedro M. Université Paris Diderot - Paris 7; FranciaFil: Vila, Alejandro Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentin

    Tuning of Enthalpic/Entropic Parameters of a Protein Redox Center through Manipulation of the Electronic Partition Function

    No full text
    Manipulation of the partition function (Q) of the redox center CuA from cytochrome c oxidase is attained by tuning the accessibility of a low lying alternative electronic ground state and by perturbation of the electrostatic potential through point mutations, loop engineering and pH variation. We report clear correlations of the entropic and enthalpic contributions to redox potentials with Q and with the identity and hydrophobicity of the weak axial ligand, respectively.Fil: Álvarez Paggi, Damián Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Zitare, Ulises Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Szuster, Jonathan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Morgada, Marcos Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Leguto, Alcides José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Vila, Alejandro Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Murgida, Daniel Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentin

    Control of the Electronic Ground State on an Electron-Transfer Copper Site by Second Sphere Perturbations

    Get PDF
    The CuA center is a dinuclear copper site that serves as an optimized hub for long-range electron transfer in heme–copper terminal oxidases. Its electronic structure can be described in terms of a σu* ground-state wavefunction with an alternative, less populated ground state of πu symmetry, which is thermally accessible. It is now shown that second-sphere mutations in the CuA containing subunit of Thermus thermophilus ba3 oxidase perturb the electronic structure, which leads to a substantial increase in the population of the πu state, as shown by different spectroscopic methods. This perturbation does not affect the redox potential of the metal site, and despite an increase in the reorganization energy, it is not detrimental to the electron-transfer kinetics. The mutations were achieved by replacing the loops that are involved in protein–protein interactions with cytochrome c, suggesting that transient protein binding could also elicit ground-state switching in the oxidase, which enables alternative electron-transfer pathways.Fil: Morgada, Marcos Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Abriata, Luciano Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Zitare, Ulises Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de Los Materiales, Medioambiente y Energía; ArgentinaFil: Álvarez Paggi, Damián Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de Los Materiales, Medioambiente y Energía; ArgentinaFil: Murgida, Daniel Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de Los Materiales, Medioambiente y Energía; ArgentinaFil: Vila, Alejandro Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; Argentin

    Reversible Switching of Redox-Active Molecular Orbitals and Electron Transfer Pathways in CuA Sites of Cytochrome c Oxidase

    Get PDF
    The CuA site of cytochromec oxidase is a redox hub that participates in rapid electron transfer at low driving forces with two redox cofactors in nearly perpendicular orientations. Spectroscopic and electrochemical characterizations performed on first and second-sphere mutants have allowed us to experimentally detect the reversible switching between two alternative electronic states that confer different directionalities to the redox reaction. Specifically, the M160H variant of a native CuA shows a reversible pH transition that allows to functionally probe both states in the same protein species. Alternation between states exerts a dramatic impact on the kinetic redox parameters, thereby suggesting this effect as the mechanism underlying the efficiency and directionality of CuA electron transfer invivo. These findings may also prove useful for the development of molecular electronics.Fil: Zitare, Ulises Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; ArgentinaFil: Álvarez Paggi, Damián Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; ArgentinaFil: Morgada, Marcos Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Abriata, Luciano Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Vila, Alejandro Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Murgida, Daniel Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentin
    corecore