314 research outputs found

    Market Definition

    Get PDF
    We explain the “hypothetical monopolist test” that has become the standard methodology for identifying relevant antitrust markets in merger cases, and discuss two approaches to implementing the test. We then focus on the implementation of the test when firms offer multiple products or services, either inside or outside the candidate market, and discuss the “hypothetical cartel test” introduced in the 2010 U.S. Merger Guidelines

    Models of mantle convection incorporating plate tectonics: The Australian region since the Cretaceous

    Get PDF
    We propose that the anomalous Cretaceous vertical motion of Australia and distinctive geochemistry and geophysics of the Australian-Antarctic Discordance (AAD) were caused by a subducted slab which migrated beneath the continent during the Cretaceous, stalled within the mantle transition zone, and is presently being drawn up by the Southeast Indian Ridge. During the Early Cretaceous the eastern interior of the Australian continent rapidly subsided, but must have later uplifted on a regional scale. Beneath the AAD the mantle is cooler than normal, as indicated by a variety of observations. Seismic tomography shows an oblong, slab-like structure orientated N-S in the transition zone and lower mantle, consistent with an old subducted slab. Using a three-dimensional model of mantle convection with imposed plate tectonics, we show that both of these well documented features are related. The models start with slabs dipping toward the restored eastern Australian margin. As Australia moves east in a hot spot reference frame from 130-90 Ma, a broad dynamic topography depression of decreasing amplitude migrates west across the continent causing the continent to subside and then uplift. Most of the slab descends into the deeper mantle, but the models show part of the cooler mantle becomes trapped within the transition zone. From 40 Ma to the present, wisps of this cool mantle are drawn up by the northwardly migrating ridge between Australia and Antarctica. This causes a circular dynamic topography depression and thinner crust to develop at the present position of the AAD. The AAD is unique within the ocean basins because it is the only place where a modern ridge has migrated over the position of long term Mesozoic subduction. Our study demonstrates the predictive power of mantle convection models when they incorporate plate tectonics

    Non-specific nasal provocation test with histamine. Analysis of the dose-response curve.

    Get PDF

    Mixed and galerkin finite element approximation of flow in a linear viscoelastic porous medium

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2013 ElsevierThis article has been made available through the Brunel Open Access Publishing Fund.We propose two fully discrete mixed and Galerkin finite element approximations to a system of equations describing the slow flow of a slightly compressible single phase fluid in a viscoelastic porous medium. One of our schemes is the natural one for the backward Euler time discretization but, due to the viscoelasticity, seems to be stable only for small enough time steps. The other scheme contains a lagged term in the viscous stress and pressure evolution equations and this is enough to prove unconditional stability. For this lagged scheme we prove an optimal order a priori error estimate under ideal regularity assumptions and demonstrate the convergence rates by using a model problem with a manufactured solution. The model and numerical scheme that we present are a natural extension to ‘poroviscoelasticity’ of the poroelasticity equations and scheme studied by Philips and Wheeler in (for example) [Philip Joseph Philips, Mary F.Wheeler, Comput. Geosci. 11 (2007) 145–158] although — importantly — their algorithms and codes would need only minor modifications in order to include the viscous effects. The equations and algorithms presented here have application to oil reservoir simulations and also to the condition of hydrocephalus — ‘water on the brain’. An illustrative example is given demonstrating that even small viscoelastic effects can produce noticeable differences in long-time response. To the best of our knowledge this is the first time a mixed and Galerkin scheme has been analysed and implemented for viscoelastic porous media

    The action of obestatin in skeletal muscle repair: stem cell expansion, muscle growth, and microenvironment remodeling

    Get PDF
    The development of therapeutic strategies for skeletal muscle diseases, such as physical injuries and myopathies, depends on the knowledge of regulatory signals that control the myogenic process. The obestatin/GPR39 system operates as an autocrine signal in the regulation of skeletal myogenesis. Using a mouse model of skeletal muscle regeneration after injury and several cellular strategies, we explored the potential use of obestatin as a therapeutic agent for the treatment of trauma-induced muscle injuries. Our results evidenced that the overexpression of the preproghrelin, and thus obestatin, and GPR39 in skeletal muscle increased regeneration after muscle injury. More importantly, the intramuscular injection of obestatin significantly enhanced muscle regeneration by simulating satellite stem cell expansion as well as myofiber hypertrophy through a kinase hierarchy. Added to the myogenic action, the obestatin administration resulted in an increased expression of VEGF/VEGFR2 and the consequent microvascularization, with no effect on collagen deposition in skeletal muscle. Furthermore, the potential inhibition of myostatin during obestatin treatment might contribute to its myogenic action improving muscle growth and regeneration. Taken together, our data demonstrate successful improvement of muscle regeneration, indicating obestatin is a potential therapeutic agent for skeletal muscle injury and would benefit other myopathies related to muscle regeneration

    Oceanic residual topography agrees with mantle flow predictions at long wavelengths

    Get PDF
    Dynamic topography, the surface deflection induced by sublithosheric mantle flow, is an important prediction made by geodynamic models, but there is an apparent disparity between geodynamic model predictions and estimates of residual topography (total topography minus lithospheric and crustal contributions). We generate synthetic global topography fields with different power spectral slopes and spatial patterns to investigate how well the long-wavelength (spherical degrees 1 to 3) components can be recovered from a discrete set of samples where residual topography has been recently estimated. An analysis of synthetic topography, along with observed geoid and gravity anomalies, demonstrates the reliability of signal recovery. Appropriate damping factors, which depend on the maximum degree in the spherical harmonic expansion that is used to fit the samples, must be applied to recover the long-wavelength topography correctly; large damping factors smooth the model excessively and suppress residual topography amplitude and power spectra unrealistically. Recovered long-wavelength residual topographies based on recent oceanic point-wise estimates with different spherical expansion degrees agree with each other and with the predicted dynamic topography from mantle flow models. The peak amplitude of the long-wavelength residual topography from oceanic observations is about 1 km, suggesting an important influence of large-scale deep mantle flow

    The Impact of a Very Weak and Thin Upper Asthenosphere on Subduction Motions

    Get PDF
    Recent geophysical observations report the presence of a very weak and thin upperasthenosphere underneath subducting oceanic plates at convergent margins. Along these margins, trenchmigrations are significantly slower than plate convergence rates. We use numerical models to assess therole of a weak upper asthenospheric layer on plate and trench motions. We show that the presence of thislayer alone can enhance an advancing trend for the motion of the plate and hamper trench retreat. Thismechanism provides a novel and alternative explanation for the slow rates of trench migration andfast-moving plates observed globally at natural subduction zones

    Oceanic Residual Topography Agrees With Mantle Flow Predictions at Long Wavelengths

    Get PDF
    Dynamic topography, the surface deflection induced by sublithosheric mantle flow, is an important prediction made by geodynamic models, but there is an apparent disparity between geodynamic model predictions and estimates of residual topography (total topography minus lithospheric and crustal contributions). We generate synthetic global topography fields with different power spectral slopes and spatial patterns to investigate how well the long-wavelength (spherical degrees 1 to 3) components can be recovered from a discrete set of samples where residual topography has been recently estimated. An analysis of synthetic topography, along with observed geoid and gravity anomalies, demonstrates the reliability of signal recovery. Appropriate damping factors, which depend on the maximum degree in the spherical harmonic expansion that is used to fit the samples, must be applied to recover the long-wavelength topography correctly; large damping factors smooth the model excessively and suppress residual topography amplitude and power spectra unrealistically. Recovered long-wavelength residual topographies based on recent oceanic point-wise estimates with different spherical expansion degrees agree with each other and with the predicted dynamic topography from mantle flow models. The peak amplitude of the long-wavelength residual topography from oceanic observations is about 1 km, suggesting an important influence of large-scale deep mantle flow. ©2017. American Geophysical Union. All Rights Reserved.T.Y. benefitted from the discussion with Judith Sippel on residual topography. The authors thank Malcolm Sambridge and two anonymous reviewers for reading the original manuscript and providing insightful suggestions. M.G. has been supported by the National Science Foundation through EAR-1358646, EAR-1600956, and EAR-1645775 and by Statoil ASA. L.M. and R. D.M. were supported by Australian Research Council grants DP130101946 and IH130200012. Dynamic topography and the recovered long-wavelength residual topography data are listed in the supporting information

    Oceanic Residual Topography Agrees With Mantle Flow Predictions at Long Wavelengths

    Get PDF
    Dynamic topography, the surface deflection induced by sublithosheric mantle flow, is an important prediction made by geodynamic models, but there is an apparent disparity between geodynamic model predictions and estimates of residual topography (total topography minus lithospheric and crustal contributions). We generate synthetic global topography fields with different power spectral slopes and spatial patterns to investigate how well the long-wavelength (spherical degrees 1 to 3) components can be recovered from a discrete set of samples where residual topography has been recently estimated. An analysis of synthetic topography, along with observed geoid and gravity anomalies, demonstrates the reliability of signal recovery. Appropriate damping factors, which depend on the maximum degree in the spherical harmonic expansion that is used to fit the samples, must be applied to recover the long-wavelength topography correctly; large damping factors smooth the model excessively and suppress residual topography amplitude and power spectra unrealistically. Recovered long-wavelength residual topographies based on recent oceanic point-wise estimates with different spherical expansion degrees agree with each other and with the predicted dynamic topography from mantle flow models. The peak amplitude of the long-wavelength residual topography from oceanic observations is about 1 km, suggesting an important influence of large-scale deep mantle flow. ©2017. American Geophysical Union. All Rights Reserved.T.Y. benefitted from the discussion with Judith Sippel on residual topography. The authors thank Malcolm Sambridge and two anonymous reviewers for reading the original manuscript and providing insightful suggestions. M.G. has been supported by the National Science Foundation through EAR-1358646, EAR-1600956, and EAR-1645775 and by Statoil ASA. L.M. and R. D.M. were supported by Australian Research Council grants DP130101946 and IH130200012. Dynamic topography and the recovered long-wavelength residual topography data are listed in the supporting information
    corecore