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Abstract Recent geophysical observations report the presence of a very weak and thin upper
asthenosphere underneath subducting oceanic plates at convergent margins. Along these margins, trench
migrations are significantly slower than plate convergence rates. We use numerical models to assess the
role of a weak upper asthenospheric layer on plate and trench motions. We show that the presence of this
layer alone can enhance an advancing trend for the motion of the plate and hamper trench retreat. This
mechanism provides a novel and alternative explanation for the slow rates of trench migration and
fast-moving plates observed globally at natural subduction zones.

Plain Language Summary Plate tectonics relies on the concept of a rigid surface layer
(the lithosphere) fragmented in a series of major and minor tectonic plates moving over a weaker and
buoyant layer of asthenospheric material. The motion and deformation of the lithosphere are primarily
driven by the sinking of the colder and denser oceanic lithosphere through time into the Earth's interior at
subduction zones. A range of geophysical regional studies has recently brought considerable attention
to the detailed structure of the asthenosphere at these zones. These studies report the presence of a thin
and even weaker asthenospheric layer at the base of the subducting lithosphere. We investigate the role of
this layer on subduction dynamics using geodynamics numerical models. Our models apply knowledge
of physics, chemistry, mathematics, and geology and study the dynamics of the Earth's deep interior and
their feedback on surface deformation. Our numerical results demonstrate that a very weak and thin upper
asthenosphere affects the dynamics of sinking plates. It acts as a slippery base for the motion of the plate
significantly increasing its speed and deformation. Our research provides a novel explanation to interpret
some of the subduction phenomena at the regional scale observed on Earth, which have proven numerical
difficulties until now.

1. Introduction
The boundary between the Earth's tectonic plates and the underlying mantle, the lithosphere-asthenosphere
boundary, is a fundamental element of plate tectonics as it critically controls the mechanical coupling
between the motion of the tectonic plates and the flow in the underlying mantle (Anderson, 1995). The
motions and deformation of the solid plates are primarily driven by the downward pull of slabs (Chapple
& Tullis, 1977; Conrad & Lithgow-Bertelloni, 2002; Forsyth & Uyedaf, 1975; Harper, 1975) and by the cou-
pling with the viscous mantle flow surrounding them (Becker & O'Connell, 2001; Conrad & Hager, 1999;
Lithgow-Bertelloni & Richards, 1995, 1998). Forces associated with the sinking of slabs into the mantle prop-
agate to the surface controlling plate motions towards the trench zone and mantle flow around subducting
slabs. Therefore, a very weak and thin upper asthenosphere (WL) may contribute to the drag exerted at the
base of subducting plates having an impact on the force balance around the oceanic lithosphere. This could
play an important role in decoupling the motion of tectonic plates from the flow in the underlying mantle,
promoting or opposing subduction motions with respect to the mantle underneath.

The subduction of an oceanic plate into the mantle occurs concurrently with the motion of trenches at the
surface. These are mobile and can either retreat, advance, or have a mixed type of motion in time with respect
to a specific reference frame. We refer to the percentage ratio between the horizontal plate (VP) and trench
migration (VT) velocities as the subduction partitioning (VT∕VP). The subduction partitioning, as well as
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the subduction dip angle and the morphology assumed by the subducting slab while interacting with the
660-km transition zone are considered diagnostic elements to identify the subduction style (e.g., Bellahsen
et al., 2005; Capitanio et al., 2007, 2009; Christensen, 1996; Di Giuseppe et al., 2008; Faccenna et al., 2007;
Funiciello et al., 2008; Gérault et al., 2012; Goes et al., 2011; Stegman et al., 2010; Zhong & Gurnis, 1997).
Most of the Earth's slab and trench motions occur in conjunction with rollback and retreat (-VT); however,
advancing plate and trench motion (+VT) toward the upper plate can also be found in some trench zones, for
example, at some of the edges of the Pacific plate (Schellart et al., 2008). Furthermore, the average absolute
trench velocity observed globally is one third or less of the total convergence at the present, consistently
across the majority of plate motions reference frames (e.g., Becker & Faccenna, 2009; Elsasser, 1971; Goes
et al., 2011; Holt & Becker, 2016; Jarrard, 1986; Schellart et al., 2008). Numerical and analogous subduction
models have previously helped to explain the fundamental force balance of plate motions, yet the observed
slow retreat with fast advance does not emerge as a general feature (Coltice et al., 2017; Holt & Becker, 2016).
Geoid observations (Mitrovica & Forte, 1997; Moresi & Gurnis, 1996; Zhong & Davies, 1999) and numerical
and geophysical studies (e.g., Bellahsen et al., 2005; Di Giuseppe et al., 2008; Funiciello et al., 2008; Schellart,
2004; Schellart et al., 2008; Wu et al., 2008; Capitanio et al., 2009) constrain the viscosity contrast between
the subducting oceanic plates and the mantle to be within a range of 100–500. These show significant slab
rollback and trench retreat (i.e., VT∕VP < −0.3). In most of these models, trench advance occurs for stiff,
slowly migrating plates such as those with a viscosity contrast between the subducting lithosphere and the
mantle greater than 1,000. However, this is not easily reconciled with what is generally observed in nature
and might apply to regional cases only (e.g., Bellahsen et al., 2005; Di Giuseppe et al., 2008; Faccenna et al.,
2007; Funiciello et al., 2008; Garfunkel et al., 1986; Goes et al., 2017; Jarrard, 1986; Lallemand et al., 2005;
Sdrolias & Müller, 2006; Schellart et al., 2008; Stegman et al., 2010). This still presents the difficult task of
explaining the low apparent strength of tectonic plates relative to the underlying mantle and the efficient
slab pull propagation needed in subduction models to match plate velocities. Some solutions to explain such
a slow retreating motion have been proposed, such as the role of slab rheology (e.g., Billen & Hirth, 2007;
Capitanio et al., 2007, 2009) or a complex mantle rheology (e.g., Holt & Becker, 2016), the effect of slab
and trench widths (e.g., Schellart et al., 2007, 2010), the presence of an overriding plate (e.g., Holt et al.,
2015; Rodríguez-González et al., 2012), multiple plates (e.g., Yamato et al., 2009) or slabs (e.g., Faccenna
et al., 2017; Holt et al., 2017), the effect of the interaction between the slab and the upper/lower mantle
discontinuity (e.g., Billen & Arredondo, 2018; Garel et al., 2014; Goes et al., 2008; Yang et al., 2017), and
the effect of ridge push and a low-viscosity asthenosphere (LVZ) (e.g., Capitanio et al., 2007; Stegman et al.,
2010).

Some of these studies (i.e., Billen & Arredondo, 2018; Capitanio et al., 2007; Holt & Becker, 2016) have also
provided insights into how an asthenosphere of diverse origin could diminish trench retreat rates. How-
ever, the globally observed trend in trench and plate motions and their partitioning at subduction zones
is yet to be investigated, especially in light of the recent geophysical observations of a very weak and thin
upper astenosphere (Kawakatsu et al., 2009; Naif et al., 2013; Schmerr, 2012; Stern et al., 2015; Hawley et al.,
2016). Common to all these observations is the evidence of a seismic velocity drop (5% to 10%) across a sharp
boundary, no more than ∼30-km thick, at the base of the subducting lithosphere at different locations in the
Pacific plate. The presence of this layer, which may support the theory of a plume-fed asthenosphere (e.g.,
Morgan, 1971; 1972; Phipps Morgan et al., 1995), is attributed to a significant number of volatiles and/or
hydrated mantle phases. These are thought to have lowered density and viscosity, increasing the partial melt
fraction, and resulting in partial melt “ponded” in lenses or channels at the base of the oceanic lithosphere
(e.g., Hawley et al., 2016; Sakamaki et al., 2013; Schmerr, 2012). Furthermore, at these localities, we gen-
erally observe |VT∕VP| < 1

3
, which applies in the majority the reference frames (Coltice et al., 2017; Goes

et al., 2017; Schellart et al., 2008). A thin layer with a high fraction of partial melt is expected to have signif-
icantly reduced mechanical strength that could potentially decouple plate motions from mantle tractions
and strongly influence the force balance between slabs, plate, and the mantle.

Previous global numerical models (i.e. Becker, 2017; Bercovici, 1996; Capitanio et al., 2007, 2009; Gérault
et al., 2012; Goes et al., 2017; Höink et al., 2011, 2012; Lithgow-Bertelloni & Richards, 1995; Stegman et al.,
2010; Tackley, 2000; Zhong et al., 1998) analyzed the role of an LVZ, but only a few have accounted for
an LVZ of a limited thickness within the range of ∼100–200-km (Becker, 2017; Richards & Lenardic, 2018;
Semple & Lenardic, 2018). Generally, an asthenosphere seems to better characterize plate-like behavior,
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improving our ability to match with observed surface velocities (Gérault et al., 2012; Tackley, 2000). Inter-
estingly, a thinner LVZ with a stronger viscosity contrast shows to further promote plate motions leading to
a stress magnification at the base of the lithosphere and helping overcome the viscous resistance at the base
of the lithosphere (Richards & Lenardic, 2018). However, this has also shown to have a smaller effect on the
global net rotation and observed global seismic anisotropy, as well as on global plate and subduction veloci-
ties, where large-scale plate dynamics seem most likely governed by broad continent-ocean asthenospheric
viscosity and buoyancy contrasts (e.g., Becker, 2017; Capitanio et al., 2007; Goes et al., 2017).

On the other hand, if an LVZ seems to have a negligible effect on the large-scale subduction dynamics or
represents a global feature, a very thin and weak top asthenosphere could still play a fundamental role
for deciphering some of the observations of subduction partitioning at the regional scale and provide rel-
evant insights on global subduction zones on Earth, such as those dominated by fast-moving plates and
slow migrating trenches, which have proven numerically difficult until now. Yet, the role of a very thin
(hWL ∼ 10–100-km) and weak (𝜂WL/𝜂WL ∼ 10–1,000) WL on the subduction partitioning (VT∕VP) has
remained unexplored to date. Here we aim to address the impact of a WL on trench and plate velocities
and their partitioning at subduction zones. Additionally, our work builds upon on the recent geophysical
inferences of a very weak and thin upper asthenosphere at convergent margins in the Pacific plate. We use
a series of numerical experiments carried out in 2-D to investigate the impact of a WL on the velocity and
morphology of subducting slabs, adopting the geological and geophysical constraints described above. We
then discuss the inferences these models yield on subduction dynamics.

2. Method
To investigate the role of a WL on subduction dynamics, we use the numerical code Underworld, described
in detail by Moresi et al. (2007) and Stegman et al. (2006). The code follows a continuum mechanics approx-
imation, which is widely used to describe geological and geophysical processes and solve the conservation
equations of mass, momentum, and energy. We assume incompressibility and neglect temperature diffusion.

The initial model setup follows the approach of Schmeling et al. (2008), Yamato et al. (2009), and Enns et al.
(2005) and is adapted to solve the problem under investigation. We model subduction dynamics and mantle
flow in a Cartesian box that extends 4,000-km in the horizontal (X) direction and 660-km in depth (Y ). Our
models are made of four layers. There is an oceanic crust, an oceanic plate, a weak upper asthenospheric
layer, and an underlying mantle, as shown in Figure 1b. Although similar, this setup differs from previous
studies (e.g., Schellart et al., 2007; Stegman et al., 2006) because the oceanic plate is made of one single
layer and the WL is characterized by a lower viscosity value than in the underlying asthenosphere or deeper
mantle. The initial condition for the subducting plate includes an initial trench position 1,000-km away
from the wall and a slab tip already penetrating the mantle, 257-km deep with a dip angle of 34◦ to the
horizontal. The modeled WL is located at the base of the oceanic plate and extends underneath the whole
length of the oceanic plate and has a thickness of 30-km. We use a model domain of 256 × 128 elements with
a uniform grid spacing in each coordinate direction. This ensures sufficient numerical resolution to promote
and properly resolve the development of a weak hinge zone. Our 2-D experiments use a pseudo-plastic (PP)
constitutive law with viscoplastic rheology near the surface and a Newtonian formulation deeper into the
lithosphere and mantle. The viscoplastic rheology of the crust promotes the development of a weak hinge
zone, which simulates the free surface and enables the oceanic lithosphere to detach from the top surface
of the model and subduct freely into the mantle (Crameri et al., 2012; Schmeling et al., 2008). Plasticity is
implemented through a depth-dependent yield criterion (Moresi & Solomatov, 1998). We use a cohesion of
a 20 MPa, a friction angle of 30◦, and a density contrast between the oceanic lithosphere and the underlying
mantle of 80 kg/m3. The viscoplastic crustal layer controls the kinematics (Enns et al., 2005; Royden &
Husson, 2006); however, the description of this phenomena is outside the scope of this study. The velocity
boundary conditions are free-slip everywhere to minimize the influence of the box sidewalls (a free-slip
condition means no tangential stress and zero normal velocity). We do not apply any kinematic boundary,
and subduction is thus dynamically initiated. The reliability of the model has been tested against previous
work as shown in section 3. The assigned values result in subduction velocities of 10–2 cm/yr in line with
the average values predicted on Earth (Figures 1C, 2, and 3).

We aim to identify end-member cases that support the description of the mechanical effect of a WL at the
lithosphere-asthenosphere boundary on a subduction zone. For this goal, we use a simplified rheological
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Figure 1. Panel (A) shows a schematic representation of the geometrical setup for the reference model (RM) and the models with a weak layer (WL) in (a) and
(b), respectively. Panel (B) shows the material field in (a), the initial rheological setup for the pseudo-plastic with different viscosity contrast mantle and WL in
(b) and WL thickness in (c). Panel (C) shows the subduction time evolution in a comparison between the RM and a model with a WL (M2, 𝜂M∕𝜂WL = 100).

and geometrical model. This very setup is necessary to constrain only the impact of a WL and to prove that
subduction motions can be the result of a simple force balance around subducting plates, while no external
forces are needed. In our study, we vary the properties of the WL at the base of the oceanic lithosphere,
that is, its viscosity, density, and thickness. Additionally, we also explore the effects of different viscosity and
thickness contrast between the plate and the mantle, and the effect of the crustal friction angle. A small
number of more complicated models explores the extent to which these simplifications may influence our
conclusions, such as the use of a more realistic visco-elastic-plastic temperature (T)-dependent rheology
with and without a WL. Finally, we omit the study of the mechanical effects given by variation in buoyancy
of plates, as these are well documented in the literature (e.g., Bellahsen et al., 2005; Capitanio et al., 2007;
2009; Christensen, 1996; Di Giuseppe et al., 2008; Faccenna et al., 2007; Funiciello et al., 2008; Gérault et al.,
2012; Goes et al., 2011; Stegman et al., 2010).
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Figure 2. Evolution of plate velocities (VP), trench, and slab tip migrations through time, for a progressive increase in
𝜂M∕𝜂WLand 𝛥𝜌(M-WL), and in hWL, as seen in (a)–(c) and (d)–(f), respectively.

The type of flow in the asthenosphere can promote or resist plate motions with respect to the underly-
ing mantle. This flow can be driven by the plates themselves (Couette flow), pressure driven by the flow
within the mantle (Poiseuille flow), or a combination of the two (combined Couette-Poiseuille flow). Sev-
eral authors (e.g., Buffett & Becker, 2012; Conrad & Hager, 1999; Gerardi & Ribe, 2018; Gerardi et al., 2019;
Ribe, 1992, 2001, 2010; Stegman et al., 2010; Semple & Lenardic, 2018, Richards & Lenardic, 2018) that the
force balance of the oceanic lithosphere is controlled by the balance of both bending-stretching momentum
and boundary and internal stresses (flow in the boundary layer).

Some of these authors (i.e., Gerardi & Ribe, 2018; Gerardi et al., 2019; Ribe, 1992, 2001) show that the motion
of a mantle fluid in an interface layer can be approximated with the motion of a Stokes fluid in the lubrication
limit. This procedure is valid when the thickness of the layer is much thinner than the horizontal length, if
lWL/hWL ≪ 1. An approximation of the tangential forces representing the motion of a Stokes fluid in a thin
layer in the lubrication limit led to the definition of the dimensionless stiffness of a surface shell (Ribe, 1992;
2001) and an interface layer (Gerardi & Ribe, 2018; Gerardi et al., 2019). In our study, we are interested in
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Figure 3. The subduction partitioning (VT∕VP%) as a function of the effective relative strength (S′ ) and the inverse of
the thickness (1/h

′
) of the lithosphere for a progressively weaker or thinner WL in a and b, respectively. The values for

each simulation are plotted using a scatter plot function of S′ and 1/h
′

in (a) and (b), respectively. (c) The variations
in VT∕VP% with respect to the effective relative stiffness of the lithosphere (D′ ) for all the simulations performed in this
study. The different colored fields define the three areas having different subduction styles. (d) The relationship
between VP and trench migration velocity, VT , as found in our experiments and in natural cases (Goes et al., 2011). The
majority of the points lies between the dotted lines (VT=mVP) having m equal to ±1/3.

describing the deformation in the effective lithosphere relative to the underlying mantle, which may or may
not contain a WL on the partitioning of trench and plate motions. Based on our numerical experiments, we
represent a first-order approximation of the deformation occurring in the system (with and without a WL)
using a series of parameters related to the dimensionless stiffness of the effective lithosphere.
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We empirically find that the effective relative strength, S′ , and thickness, h
′
, of the lithosphere relative to

the underlying mantle (Figures 3a, 3b, and S7 in the supporting information) can be taken into account as

S′ =
𝜂P𝜂WL

𝜂2
M

, h′ =
hP

hM

(
1 +

hWL

hM

)
(1)

where 𝜂P, 𝜂WL, and 𝜂M indicate the viscosity of the plate, weak layer, and mantle, and with hP, hWL, and hM
being thicknesses of the plate, the WL, and the mantle, respectively. Note that when a WL is not included
𝜂WL= 𝜂M and hWL = 0, allowing us to characterize all the experiments with and without a WL.

We also find that the combined effect of the relative contrast in strength and thickness between the effective
lithosphere and the underlying mantle can be expressed by the effective relative stiffness of the lithosphere,
D′ , as

D′ = log(S′)h′ (2)

D′ represents an approximation of the tangential forces acting on a subducting lithosphere (with and without
a WL) and help to explain the decoupling effect of a WL at the base of the lithosphere. Our study repre-
sents a balance of forces problem where the subduction dynamics with a WL are governed by the balance
of bending-stretching moment and internal and boundary stresses (flow in the lithosphere and astheno-
sphere), which controls dip and curvature of slabs, Figure 3c, providing new insights on the partitioning of
subduction surface motions.

Further in the text, these parameters are used to describe the deformation occurring in the system. Finally,
in our simulations we refer to VOP as the magnitude of the horizontal plate velocity and VT as the trench
migration velocity. The results obtained in our numerical simulations were systematically analyzed, par-
ticularly through the analysis of the morphological and velocity fields through the time evolution of the
models. More information about the methodology adopted and the parameters used and varied in this study
is available in the supporting information.

3. Results
Here, we first present the evolution and general aspects of the reference model (RM), which satisfy a range of
geophysical and geological observations, then summarize the results obtained for all the subduction experi-
ments in comparison to the RM case. Also, all the PP models presented here share three common subduction
temporal evolution stages. These evolution stages are (i) an initial period where subduction is dynamically
initiated and the slab progressively accelerates while is sinking into the mantle; (ii) a transitional stage where
the slab decelerates while interacting with the bottom of the model; and (iii) a final steady-state configura-
tion at the midmantle boundary. These are shown in Figures 1Ca, b and c, and 2 and are in agreement with
previous studies (e.g., Bellahsen et al., 2005; Stegman et al., 2010; Yamato et al., 2009).

3.1. Reference Model Evolution
The reference model has the same characteristic of the model setup presented above, but it does not contain
a WL (Figure 1Aa). The temporal evolution of this model is shown in Figures 1Ca–1Cc. As the model pro-
gresses in time, we distinguish three stages of evolution given by the sinking of the oceanic plate into the
mantle. In the first stage, the initiation of subduction follows the initial buoyancy configuration, with a slab
tip immersed in the mantle. During this stage, the slab reaches a dipping angle of 60–70◦ and the magnitude
of the plate velocity increases progressively. This stage is associated with trench retreat at the surface, while
at depth, the progressive sinking drives a displacement of the mantle from beneath the slab (Figure 1Ca).
In the second phase, the slab tip interacts with the bottom of the model box. This phase is reached in 9.23
million years and is characterized by a general velocity drop (Figure 1Cb). The final stage is defined by the
sliding of the slab at the bottom of the model and the system reaches an approximate steady-state config-
uration (Figure 1Cc). During this stage, the plate velocity increases toward an intermediate value between
the two previous time phases and the slab continues to roll back, while the trench retreats (Figures 2a and
2b). Since the reliability and the evolution of this model are well known and in agreement with the litera-
ture (e.g., Bellahsen et al., 2005; Funiciello et al., 2008), it was chosen as a reference for comparison with the
models having a WL.
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3.2. An Advancing Trend for Plate and Trench Motions
The primary effect of introducing a weak upper asthenospheric layer is to increase the subduction speed,
particularly increasing plate convergence velocity and reducing trench retreat motion. In some models, it
also increases the subduction dip angle and influences the shape assumed by the subducting slab, while
interacting with the 660-km discontinuity (Figures 1c and 3). A comparison between the RM and a WL
model having a viscosity contrast between the mantle and the WL of 2 order of magnitude (𝜂M∕𝜂WL=102)
shows these effects in Figures 1Ca–1Cc and 1Cd–1Cf, respectively.

The impact of these effects depends mainly on the viscosity between the mantle and the WL and on the
thickness of the WL, and less on the density of the WL. In our PP models, we find that for moderate viscosity
contrasts mantle-WL (101 < 𝜂M∕𝜂WL < 102) and a layer thickness between 10 and 20-km, VP increases and
trench retreat rate decreases, while the overall shape of the slab is not substantially affected. However, for
larger viscosity contrasts (𝜂M∕𝜂WL≥ 102) and thickness of the weak layer (>20-km), a significant change in
velocity and trench migration mechanism develops and, the morphology of the subducting slab may also
change (Figure 2). For thinner (hWL <10-km), more buoyant (𝛥𝜌rho(M-WL)≈ 20 kg/m3) and stronger layers
(𝜂M∕𝜂WL≤10), the overall effect is reduced. However, thinner layers are sensitive to numerical resolution
and it is plausible that thinner layers may also play a relevant role on the VT∕VP. It is also important to note
that a WL has not a significant impact on the time necessary for the slab tip to reach the bottom of the model
(Figures 2c and 2f), which shows that a WL has a smaller influence on the vertical slab motion than it has
on the horizontal plate motion.

All models with a WL show a significantly steeper velocity transition at the base of the lithosphere compared
with models with no WL (Figure 1C). This suggests that a weak and thin upper asthenosphere has the
potential to effectively decouple the motion of the lithosphere from the flow into the underlying mantle.
This process results in a more efficient asthenosphere drag, which decreases the resistance to shearing in
the underlying mantle, lubricates the base of a plate and in turn contributes to increasing the plate speed
(Figures 1C and 2a, 2b, 2d, and 2e). The WL acts as a slippery base for the motion of the oceanic plate while
sinking into the mantle. Since a WL is lighter than the above lithosphere (Kawakatsu et al., 2009; Hawley
et al., 2016), also the rising of lighter material contributes to the gravitational sliding of the plate (Figure 1C).
Furthermore, the deep entertainment of a WL on one side of the subducting slab also reduces the viscous
drag and thus facilitates the sinking of the slab into the mantle. Such vanishing drag on one of the slab's
sides justifies the increase in sinking velocities up to a factor of ≈2 we observe in our models, (Figures 1C,
and 2a and 2d).

In our models, we also observe a correlation between the value of the subduction partitioning and the effec-
tive relative strength, S′ , and the inverse of the effective relative thickness, 1/h

′
, of the lithosphere relative

to the underlying mantle, as shown in Figures 3a and 3b. Three important features are worth noting. First,
this trend can be described by an inverse-tangent function for both S′ and 1/h

′
. Second, for low and high

values of S′ and 1/h
′
, the subduction partitioning doesn't change significantly and the function trend is

asymptotic. Hence, a WL can increase plate velocities value up to a maximum of a factor of ≈2 and oppose
trench motions. This shows that the effect of a WL on subduction motions is limited by the sinking dynam-
ics. Third, this asymptotic trend is further constrained by the fact that areas having S′

> 5 × 102 and
S′

< ×10−2 are excluded from the graph (Figure 3a). Such values of S′ would correspond to plate-mantle and
mantle-WL viscosity contrasts above 500 and 1,000, respectively. These are not found in nature and therefore
not considered. For intermediate S′ and h

′
values, the subduction partitioning follows a cotangential trend

(Figure 3b).

In this study, we perform simulations with varied parameters over a range that is Earth-like (Figure 1b and
supporting information Table S1). Our full set of experiments include cases where the initial viscosity of the
plate and the mantle, the plate thickness, and the crustal friction angle are varied to reproduce previous work
(e.g., Bellahsen et al., 2005; Di Giuseppe et al., 2008; Funiciello et al., 2008) and expand upon these through
the incorporation of a WL. On the basis of all our experiments we propose a regime diagram, which defines
three distinctive subduction styles as a function of D′ , subduction motions (VT∕VP%) and slab morphologies
and dips, Figure 3c. These subduction regimes are characterized by (i) a very steep slabs buckled at the
midmantle discontinuity with advancing to quasi-stationary trenches; (ii) a relatively steep slab (but <90◦)
with quasi-stationary to moderately retreating trenches, which continue flat at the 660-km discontinuity;
and (iii) a shallower slabs with usually fast-retreating trenches, which buoyantly tend to stagnate at the

CARLUCCIO ET AL. 11,900



Geophysical Research Letters 10.1029/2019GL085212

midmantle boundary (Figure 3c). D′ allows us to capture and constrain these three subduction styles, which
characterize the deformation in the system with and without a WL, as well as most of the variety of shapes
and subduction partitioning mechanisms we observe in nature. These observations support a mechanism
whereby the subduction style and motions are controlled by the amount of asthenospheric drag exerted at
the base of the plate.

Finally, in most of our experiments we observe a correlation between VP and VT , which shows VT±1/3VP
(Figure 3d). To test the validity of our models with relation to subduction zones on Earth, we use the estimate
on VP and VT from Goes et al. (2008) for subduction zones in the Pacific plate and plot this versus our
numerical experiments (Figure 3d). Goes et al. (2008) uses the database of Sdrolias and Müller (2006), which
is built on the Indo-Atlantic hot spots reference frame from O'Neill et al. (2005). The values of VP and VT
emerging from our models mostly positively align with observed natural plate and trench migration rates.
There are, however, zones that show poor correlation with our models, such as the Tonga and Marianas
trenches, which show VT > ±1/3VP. At these localities, it is plausible that other mechanisms may be of major
regional importance or coexist with the presence of a WL and indeed further contribute to the complexity
we observe in natural systems, for example, double subduction systems and arcuate arcs. Nonetheless, at
the global scale, it appears that a regional WL mechanism may play a key role in dictating the partitioning
of plate and trench motions and offers a better match to the average VT∕VP% values we presently observe
on Earth.

4. Discussion and Conclusion
Previous global numerical models, observations and laboratory-derived creep laws suggest a moderate bulk
viscosity contrast of 1–2 orders of magnitude between the asthenosphere beneath the oceanic lithosphere
and the underlying mantle (Becker, 2017; Richards & Lenardic, 2018) and asthenosphere viscosity between
∼0.5×1018–1021 Pa·s in∼200-km thickness (Hu et al., 2016; Freed et al., 2017; Mitrovica, 1996). Such inferred
large-scale asthenosphere weaknesses are generally explained by invoking the role of temperature or pres-
sure; however, uncertainties on the true values remain, for example, choice of appropriate rheologies and
parameters. Also, the nonuniqueness relating to viscosity and thickness of an LVZ can confound the ability
to distinguish between a thin layer of very low viscosity and a thick layer of greater viscosity (Cathles III,
1975; Richards & Lenardic, 2018). Moreover, the trade-off between the resolving power and lateral extent of
seismic studies may hinder the ability to distinguish narrow channels at the base of the lithosphere, such as
that of a WL. Kawakatsu et al. (2009), Schmerr (2012), Naif et al. (2013), Stern et al. (2015), and Hawley et al.
(2016) show that asthenospheric local and regional configurations may lead to up to a ≈4 orders of magni-
tude melt-induced viscosity reduction into one or multiple thin and more buoyant layers at the base of the
lithosphere; for example, Hawley et al. suggest that the enhanced melt content and/or presence of hydrated
phases would have significantly lubricated the base of the subducting lithosphere of the Farallon slab with
potential implications for subduction motions. These asthenospheric configurations seem to be compatible
with global plates and seismic anisotropy models as long as their lateral extent remains limited compared
to the rest of the plate (Becker, 2017).

In our study, we show that the presence of a thin WL at the base of the oceanic lithosphere critically affects
subduction dynamics, particularly influencing the subduction speed, reducing trench migration rates and,
in some cases, controlling the morphology assumed by a subducting slab. Our results show that for large
viscosity contrasts (𝜂M∕𝜂WL ≥ 102) and a WL thickness greater than 20-km, the morphology of the sub-
ducting slab can be affected. In such cases, the subduction system may likely develop a quasi-stationary
to an advancing moving trench with a moderate to fast convergence rate for the plate. For moderate vis-
cosity contrasts between the mantle and the WL (101 < 𝜂M∕𝜂WL < 102), the subduction velocity increases
and trench retreat rate decreases without significantly changing the overall shape of the slab. The overall
effect is reduced where thinner and more buoyant layers exist (Figures 2 and 3a and b). This effect is con-
strained within end-member cases, and a description of the full range of slab behaviors is captured by the
regime diagram in Figure 3c. We also find that all the simulations with a WL are confined by velocity vari-
ations of a factor of ≈2 maximum, and all show a low absolute subduction partitioning component, that is,|VT∕VP| < 40% (Figures 3a and 3b).

The overall impact of a WL on subduction dynamics depends on the relative contrast between the effective
properties of the lithosphere and the mantle. We have proposed the effective relative stiffness of the litho-
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sphere (D′ ), as a diagnostic parameter for this effect. D′ not only describes the results found in this study
and thus the effect of a WL but also includes plate strength values, which have previously been examined in
a broad range of published numerical and analogical studies (e.g., Bellahsen et al., 2005; Di Giuseppe et al.,
2008; Funiciello et al., 2008). All our experiments create a comprehensive subduction regime diagram that
allows one to distinguish three subduction styles as a function of the relationship between D′ , subduction
motions (VT∕VP%), and slab morphologies and dips. This characterizes and constrains the deformation in
the system, as well as most of the variety of shapes, velocities and trench migration mechanisms we observe
in nature (Figure 3c). Although our study does not exclude the potential for alternative mechanisms, the
role of the effective relative stiffness of the lithosphere seems to be of significance consistently with previous
studies (Capitanio et al., 2007; Stegman et al., 2010) and due to lithosphere-mantle decoupling processes,
thus affecting trench and plate motions at subduction zones.

The setup chosen has allowed us to demonstrate that low trench retreat and fast plate speed can be the result
of a simpler force balance around the subducting plate alone, while no extra forces or factors are needed (e.g.,
an overriding plate and an upper-lower mantle discontinuity); however, we do not exclude that other factors
that have already shown to reduce trench motions may additionally affect or coexist with the mechanism
illustrated here. Nonetheless, we also employed a small number of more complicated models to explore the
extent to which our simplifications may influence our conclusions (supporting information Figures S3–S6).
We tested the role of a visco-elastic-plastic T-dependent rheology, which would naturally lead to weakening
at the base of the lithosphere, the inclusion of the upper/lower mantle transition zone and the effect of an
extended modeled box. While rheology and choice of parameters can be different, the effect of a WL shows
a consistent signature.

In the literature, many models have been made to describe subduction dynamics. While these models
have provided useful insights toward the modeling of natural subduction systems and mantle convection
processes, the modeling of subduction zones has not yet resolved clear trends for the subduction style, con-
vergence velocity, trench motion, and slab dip, especially in the case of slow retreating or advancing trenches
in natural settings (e.g., Capitanio et al., 2007; Garfunkel et al., 1986; Heuret & Lallemand, 2005; Jarrard,
1986; King, 2001; Lallemand et al., 2005; Sdrolias & Müller, 2006). Some more recent studies have also
brought considerable attention to the effect of an asthenosphere of some origin in reducing trench retreat
(e.g., Billen & Arredondo, 2018; Holt & Becker, 2016) and also enhancing plate motion when a ridge push
condition is applied (e.g., Capitanio et al., 2007). This, along with the addition of an overriding plate to the
system seems to be relevant for reducing |VT∕VP| observed in numerical modeling (Holt et al., 2015; Holt
et al., 2015; Holt & Becker, 2016; Rodríguez-González et al., 2012).

Here, we suggest that the presence of a weak upper asthenosphere underneath subducting plates in a free
subduction model is already alone of importance in decreasing the high absolute values of the subduction
partitioning observed in many precedent analogues and numerical models and to level more in line with
the average values presently seen on Earth. Specifically, in our models the average absolute trench velocity
is approximately 30% or lower of the total convergence plate velocity (Figure 3d), as found in many plate
motion reference frames (e.g., Becker & Faccenna, 2009; Goscombe & Gray, 2008; Schellart et al., 2008).
Furthermore, while a maximum increase in convergence velocity of a factor of ≈2 due to the weak layer
is likely negligible in global models, its role becomes relevant at a regional scale influencing subduction
motions and mantle flow dynamics. Thus, the regional mechanism proposed here provides a novel and
alternative explanation to interpret the apparent dichotomy in subduction partitioning values and slab dip
angles globally observed along the edges of the Pacific Plate (Bellahsen et al., 2005; Coltice et al., 2017;
Lallemand et al., 2005), such as the localities where the presence of a WL is confirmed by geophysical studies
(e.g., Hawley et al., 2016; Kawakatsu et al., 2009; Naif et al., 2013; Schmerr, 2012; Stern et al., 2015).
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