44 research outputs found

    Self-Healing Polymer Nanocomposite Materials by Joule Effect

    Get PDF
    Nowadays, the self-healing approach in materials science mainly relies on functionalized polymers used as matrices in nanocomposites. Through different physicochemical pathways and stimuli, these materials can undergo self-repairing mechanisms that represent a great advantage to prolonging materials service-life, thus avoiding early disposal. Particularly, the use of the Joule effect as an external stimulus for self-healing in conductive nanocomposites is under-reported in the literature. However, it is of particular importance because it incorporates nanofillers with tunable features thus producing multifunctional materials. The aim of this review is the comprehensive analysis of conductive polymer nanocomposites presenting reversible dynamic bonds and their energetical activation to perform self-healing through the Joule effect

    Electrically Self-Healing Thermoset MWCNTs Composites Based on Diels-Alder and Hydrogen Bonds

    Get PDF
    In this work, we prepared electrically conductive self-healing nanocomposites. The material consists of multi-walled carbon nanotubes (MWCNT) that are dispersed into thermally reversible crosslinked polyketones. The reversible nature is based on both covalent (Diels-Alder) and non-covalent (hydrogen bonding) interactions. The design allowed for us to tune the thermomechanical properties of the system by changing the fractions of filler, and diene-dienophile and hydroxyl groups. The nanocomposites show up to 1 x 10(4) S/m electrical conductivity, reaching temperatures between 120 and 150 degrees C under 20-50 V. The self-healing effect, induced by electricity was qualitatively demonstrated as microcracks were repaired. As pointed out by electron microscopy, samples that were already healed by electricity showed a better dispersion of MWCNT within the polymer. These features point toward prolonging the service life of polymer nanocomposites, improving the product performance, making it effectively stronger and more reliable

    Maleimide Self-Reaction in Furan/Maleimide-Based Reversibly Crosslinked Polyketones:Processing Limitation or Potential Advantage?

    Get PDF
    Polymers crosslinked via furan/maleimide thermo-reversible chemistry have been extensively explored as reprocessable and self-healing thermosets and elastomers. For such applications, it is important that the thermo-reversible features are reproducible after many reprocessing and healing cycles. Therefore, side reactions are undesirable. However, we have noticed irreversible changes in the mechanical properties of such materials when exposing them to temperatures around 150 °C. In this work, we study whether these changes are due to the self-reaction of maleimide moieties that may take place at this rather low temperature. In order to do so, we prepared a furan-grafted polyketone crosslinked with the commonly used aromatic bismaleimide (1,1′-(methylenedi-4,1-phenylene)bismaleimide), and exposed it to isothermal treatments at 150 °C. The changes in the chemistry and thermo-mechanical properties were mainly studied by infrared spectroscopy, 1H-NMR, and rheology. Our results indicate that maleimide self-reaction does take place in the studied polymer system. This finding comes along with limitations over the reprocessing and self-healing procedures for furan/maleimide-based reversibly crosslinked polymers that present their softening (decrosslinking) point at relatively high temperatures. On the other hand, the side reaction can also be used to tune the properties of such polymer products via in situ thermal treatments

    Electrically-Responsive Reversible Polyketone/MWCNT Network through Diels-Alder Chemistry

    Get PDF
    This study examines the preparation of electrically conductive polymer networks based on furan-functionalised polyketone (PK-Fu) doped with multi-walled carbon nanotubes (MWCNTs) and reversibly crosslinked with bis-maleimide (B-Ma) via Diels-Alder (DA) cycloaddition. Notably, the incorporation of 5 wt.% of MWCNTs results in an increased modulus of the material, and makes it thermally and electrically conductive. Analysis by X-ray photoelectron spectroscopy indicates that MWCNTs, due to their diene/dienophile character, covalently interact with the matrix via DA reaction, leading to effective interfacial adhesion between the components. Raman spectroscopy points to a more effective graphitic ordering of MWCNTs after reaction with PK-Fu and B-Ma. After crosslinking the obtained composite via the DA reaction, the softening point (tan(delta) in dynamic mechanical analysis measurements) increases up to 155 degrees C, as compared to the value of 130 degrees C for the PK-Fu crosslinked with B-Ma and that of 140 degrees C for the PK-Fu/B-Ma/MWCNT nanocomposite before resistive heating (responsible for crosslinking). After grinding the composite, compression moulding (150 degrees C/40 bar) activates the retro-DA process that disrupts the network, allowing it to be reshaped as a thermoplastic. A subsequent process of annealing via resistive heating demonstrates the possibility of reconnecting the decoupled DA linkages, thus providing the PK networks with the same thermal, mechanical, and electrical properties as the crosslinked pristine systems

    pH-Responsive Polyketone/5,10,15,20-Tetrakis-(Sulfonatophenyl)Porphyrin Supramolecular Submicron Colloidal Structures

    Get PDF
    In this work, we prepared color-changing colloids by using the electrostatic self-assembly approach. The supramolecular structures are composed of a pH-responsive polymeric surfactant and the water-soluble porphyrin 5,10,15,20-tetrakis-(sulfonatophenyl)porphyrin (TPPS). The pH-responsive surfactant polymer was achieved by the chemical modification of an alternating aliphatic polyketone (PK) via the Paal-Knorr reaction with N-(2-hydroxyethyl)ethylenediamine (HEDA). The resulting polymer/dye supramolecular systems form colloids at the submicron level displaying negative zeta potential at neutral and basic pH, and, at acidic pH, flocculation is observed. Remarkably, the colloids showed a gradual color change from green to pinky-red due to the protonation/deprotonation process of TPPS from pH 2 to pH 12, revealing different aggregation behavior

    Electroactive performance and cost evaluation of carbon nanotubes and carbon black as conductive fillers in self-healing shape memory polymers and other composites

    Get PDF
    Multiwalled carbon nanotubes (MWCNT) and carbon black (CB) have been widely used as conductive fillers in electroactive polymer composites. MWCNT-based composites generally have lower resistivity and percolation thresholds, while CB-based ones are considerably cheaper. To balance these pros and cons, ternary composites (TCs) (polymer-MWCNT-CB) can be formulated. Here, we prepared electroactive MWCNT-CB TCs capable of self-healing and with shape memory properties, based on polyketones reversibly-crosslinked via Diels-Alder chemistry. Unexpectedly, the cheaper CB-rich formulations had lower resistivities, thus better electroactive self-healing and shape memory responses. Nonetheless, not all electroactive MWCNT-CB TCs have this clear cost-effectiveness. We evaluated the cost-performance of multiple reported MWCNT-CB TCs systems and found different general trends (positive, negative, and synergistic cost-efficiency relationships). Thus, the cost-effectiveness of these fillers (and their combination) greatly depends on each composite system and what it is intended for. This work includes the first systematic report on cost-performance of MWCNT and CB as conductive fillers

    Mechanical properties and electrical surface charges of microfibrillated cellulose/imidazole-modified polyketone composite membranes

    Get PDF
    In the present work, microfibrillated cellulose (MFC) suspensions were produced by high-pressure homogenization and subsequently used to fabricate MFC membranes (C-1) by vacuum filtration followed by hot-pressing. A polyketone (PK50) was chemically modified by Paal-Knorr reaction to graft imidazole (IM) functional groups along its backbone structure. The resulting polymer is referred to as PK50IM80. By solution impregnation, C-1 was immersed in an aqueous solution of PK50IM80 and subsequently hot pressed, resulting in the fabrication of MFC/PK50IM80 composite membranes (C-IMP). Another method, referred to as solution mixing, consisted in adding MFC into an aqueous solution of PK50IM80 followed by vacuum filtration and hot-pressing to obtain MFC/PK50IM80 composite membranes (C-MEZC). C-IMP and C-MEZC were characterized by a wide range of analytical techniques including, X-ray photoelectron spectroscopy, Fourier-transform infrared chemical imaging, scanning electron microscopy, atomic force microscopy, dynamical mechanical analysis, tensile testing as well as streaming zeta potential, and compared to C-1 (reference material). The results suggested that C-IMP possess a more homogeneous distribution of PK50IM80 at their surface compared to C-MEZC. C-IMP was found to possess significantly enhanced Young's modulus compared to C-1 and C-MEZC. The tensile strength of C-IMP was found to improve significantly compared to C-1, whereas C-1 possessed significantly higher tensile index than C-IMP and C-MEZC. Furthermore, the presence of PK50IM80 at the surface of MFC was found to significantly shift the isoelectric point (IEP) of the membranes from pH 2.3 to a maximum value of 4.5 for C-IMP. Above the IEP, C-IMP and C-MEZC were found to possess significantly less negative electrical surface charges (plateau value of -25 mV at pH 10) when compared to C-1 (plateau value of -42 mV at pH 10). Our approach may have implication to broaden the range of filtration applications of MFC-based membranes

    Diels-Alder-based thermo-reversibly crosslinked polymers:Interplay of crosslinking density, network mobility, kinetics and stereoisomerism

    Get PDF
    Polymers crosslinked through thermo-reversible furan/maleimide Diels-Alder chemistry have been widely explored, since they stand as an ingenious design for reprocessable and self-healing thermosets and elastomers. For these polymeric products, crosslinking density plays a key role on the polymer thermo-reversibility. However, how this degree of network interconnectivity influences the kinetics of thermal reversibility has not yet been addressed. In order to tackle this problem, furan-grafted polyketones crosslinked by a bi-functional maleimide were prepared with different ratios between maleimide and furan groups. The thermo-reversible dynamics of the prepared polymers were then studied by rheology and differential scanning calorimetry. Here we show that, the thermo-reversible process occurs faster and at lower temperatures in polymers with lower crosslinking densities. Network mobility is responsible for this effect. It allows the formulations to rearrange their polymer network differently through the heating-cooling cycles. The results also indicate that the crosslinking density rather than the stereoisomerism of the Diels-Alder adducts plays a larger role in the reversible behavior of the system. Additionally, the thermo-reversible features of the polymer were shown to be dependent on its thermal history. This work impacts the development of reprocessable and self-healing crosslinked polymers, and the design of the corresponding reprocessing and healing procedures

    Electroactive Self-Healing Shape Memory Polymer Composites Based on Diels–Alder Chemistry

    Get PDF
    Both shape memory and self-healing polymers have received significant attention from the materials science community. The former, for their application as actuators, self-deployable structures, and medical devices; and the latter, for extending the lifetime of polymeric products. Both effects can be stimulated by heat, which makes resistive heating a practical approach to trigger these effects. Here we show a conductive polyketone polymer and carbon nanotube composite with cross-links based on the thermo-reversible furan/maleimide Diels–Alder chemistry. This approach resulted in products with efficient electroactive shape memory effect, shape reprogrammability, and self-healing. They exhibit electroactive shape memory behavior with recovery ratios of about 0.9; requiring less than a minute for shape recovery; electroactive self-healing behavior able to repair microcracks and almost fully recover their mechanical properties; requiring a voltage in the order of tens of volts for both shape memory and self-healing effects. To the best of our knowledge, this is the first report of electroactive self-healing shape memory polymer composites that use covalent reversible Diels–Alder linkages, which yield robust solvent-resistant polymer networks without jeopardizing their reprocessability. These responsive polymers may be ideal for soft robotics and actuators. They are also a step toward sustainable materials by allowing an increased lifetime of use and reprocessability

    A Network Analysis of the Human T-Cell Activation Gene Network Identifies Jagged1 as a Therapeutic Target for Autoimmune Diseases

    Get PDF
    Understanding complex diseases will benefit the recognition of the properties of the gene networks that control biological functions. Here, we set out to model the gene network that controls T-cell activation in humans, which is critical for the development of autoimmune diseases such as Multiple Sclerosis (MS). The network was established on the basis of the quantitative expression from 104 individuals of 20 genes of the immune system, as well as on biological information from the Ingenuity database and Bayesian inference. Of the 31 links (gene interactions) identified in the network, 18 were identified in the Ingenuity database and 13 were new and we validated 7 of 8 interactions experimentally. In the MS patients network, we found an increase in the weight of gene interactions related to Th1 function and a decrease in those related to Treg and Th2 function. Indeed, we found that IFN-Ăź therapy induces changes in gene interactions related to T cell proliferation and adhesion, although these gene interactions were not restored to levels similar to controls. Finally, we identify JAG1 as a new therapeutic target whose differential behaviour in the MS network was not modified by immunomodulatory therapy. In vitro treatment with a Jagged1 agonist peptide modulated the T-cell activation network in PBMCs from patients with MS. Moreover, treatment of mice with experimental autoimmune encephalomyelitis with the Jagged1 agonist ameliorated the disease course, and modulated Th2, Th1 and Treg function. This study illustrates how network analysis can predict therapeutic targets for immune intervention and identified the immunomodulatory properties of Jagged1 making it a new therapeutic target for MS and other autoimmune diseases
    corecore