39 research outputs found

    Fabry disease with atypical phenotype identified by massively parallel sequencing in early-onset kidney failure

    Get PDF
    Background. The cause of chronic kidney disease (CKD) remains unknown in ∌20% of patients with kidney failure. Massively parallel sequencing (MPS) can be a valuable diagnostic tool in patients with unexplained CKD, with a diagnostic yield of 12%–56%. Here, we report the use of MPS to establish a genetic diagnosis in a 24-year-old index patient who presented with hypertension, nephrotic-range proteinuria and kidney failure of unknown origin. Additionally, we describe a second family with the same mutation presenting with early-onset CKD. Results. In Family 1, MPS identified a known pathogenic variant in GLA (p.Ile319Thr), and plasma globotriaosylsphingosine and α-galactosidase A activity were compatible with the diagnosis of Fabry disease (FD). Segregation analysis identified three other family members carrying the same pathogenic variant who had mild or absent kidney phenotypes. One family member was offered enzyme therapy. While FD could not be established with certainty as the cause of kidney failure in the index patient, no alternative explanation was found. In Family 2, the index patient had severe glomerulosclerosis and a kidney biopsy compatible with FD at the age of 30 years, along with cardiac involvement and a history of acroparesthesia since childhood, in keeping with a more classical Fabry phenotype. Conclusion. These findings highlight the large phenotypic heterogeneity associated with GLA mutations in FD and underline several important implications of MPS in the work-up of patients with unexplained kidney failure.</p

    Fabry disease with atypical phenotype identified by massively parallel sequencing in early-onset kidney failure

    Get PDF
    Background. The cause of chronic kidney disease (CKD) remains unknown in ∌20% of patients with kidney failure. Massively parallel sequencing (MPS) can be a valuable diagnostic tool in patients with unexplained CKD, with a diagnostic yield of 12%–56%. Here, we report the use of MPS to establish a genetic diagnosis in a 24-year-old index patient who presented with hypertension, nephrotic-range proteinuria and kidney failure of unknown origin. Additionally, we describe a second family with the same mutation presenting with early-onset CKD. Results. In Family 1, MPS identified a known pathogenic variant in GLA (p.Ile319Thr), and plasma globotriaosylsphingosine and α-galactosidase A activity were compatible with the diagnosis of Fabry disease (FD). Segregation analysis identified three other family members carrying the same pathogenic variant who had mild or absent kidney phenotypes. One family member was offered enzyme therapy. While FD could not be established with certainty as the cause of kidney failure in the index patient, no alternative explanation was found. In Family 2, the index patient had severe glomerulosclerosis and a kidney biopsy compatible with FD at the age of 30 years, along with cardiac involvement and a history of acroparesthesia since childhood, in keeping with a more classical Fabry phenotype. Conclusion. These findings highlight the large phenotypic heterogeneity associated with GLA mutations in FD and underline several important implications of MPS in the work-up of patients with unexplained kidney failure.</p

    Development and implementation of a new service delivery model for children with disabilities : implications for DCD

    Get PDF
    There is a general consensus that new service delivery models are needed for children with developmental coordination disorder (DCD). Emerging principles to guide service delivery include the use of graduated levels of intensity and evidence-based services that focus on function and participation. Interdisciplinary, community-based service delivery models based on best practice principles are needed. In this case report, we propose the Apollo model as an example of an innovative service delivery model for children with DCD. We describe the context that led to the creation of a program for children with DCD, describe the service delivery model and services, and share lessons learned through implementation. The Apollo model has 5 components: first contact, service delivery coordination, community-, group- and individual-interventions. This model guided the development of a streamlined set of services offered to children with DCD, including early-intake to share educational information with families, community interventions, inter-disciplinary and occupational therapy groups and individual interventions. Following implementation of the Apollo model, waiting times decreased and numbers of children receiving services increased, without compromising service quality. Lessons learned are shared to facilitate development of other practice models to support children with DCD

    Lentivirus-mediated gene therapy for Fabry disease

    Get PDF
    Enzyme and chaperone therapies are used to treat Fabry disease. Such treatments are expensive and require intrusive biweekly infusions; they are also not particularly efficacious. In this pilot, single-arm study (NCT02800070), five adult males with Type 1 (classical) phenotype Fabry disease were infused with autologous lentivirus-transduced, CD34+-selected, hematopoietic stem/progenitor cells engineered to express alpha-galactosidase A (α-gal A). Safety and toxicity are the primary endpoints. The non-myeloablative preparative regimen consisted of intravenous melphalan. No serious adverse events (AEs) are attributable to the investigational product. All patients produced α-gal A to near normal levels within one week. Vector is detected in peripheral blood and bone marrow cells, plasma and leukocytes demonstrate α-gal A activity within or above the reference range, and reductions in plasma and urine globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3) are seen. While the study and evaluations are still ongoing, the first patient is nearly three years post-infusion. Three patients have elected to discontinue enzyme therapy

    Epilepsy due to PNPO mutations: genotype, environment and treatment affect presentation and outcome

    Get PDF
    Mutations in PNPO are a known cause of neonatal onset seizures that are resistant to pyridoxine but responsive to pyridoxal phosphate (PLP). Mills etal. show that PNPO mutations can also cause neonatal onset seizures that respond to pyridoxine but worsen with PLP, as well as PLP-responsive infantile spasm

    Optimizing the Design of Oligonucleotides for Homology Directed Gene Targeting

    Get PDF
    BACKGROUND: Gene targeting depends on the ability of cells to use homologous recombination to integrate exogenous DNA into their own genome. A robust mechanistic model of homologous recombination is necessary to fully exploit gene targeting for therapeutic benefit. METHODOLOGY/PRINCIPAL FINDINGS: In this work, our recently developed numerical simulation model for homology search is employed to develop rules for the design of oligonucleotides used in gene targeting. A Metropolis Monte-Carlo algorithm is used to predict the pairing dynamics of an oligonucleotide with the target double-stranded DNA. The model calculates the base-alignment between a long, target double-stranded DNA and a probe nucleoprotein filament comprised of homologous recombination proteins (Rad51 or RecA) polymerized on a single strand DNA. In this study, we considered different sizes of oligonucleotides containing 1 or 3 base heterologies with the target; different positions on the probe were tested to investigate the effect of the mismatch position on the pairing dynamics and stability. We show that the optimal design is a compromise between the mean time to reach a perfect alignment between the two molecules and the stability of the complex. CONCLUSION AND SIGNIFICANCE: A single heterology can be placed anywhere without significantly affecting the stability of the triplex. In the case of three consecutive heterologies, our modeling recommends using long oligonucleotides (at least 35 bases) in which the heterologous sequences are positioned at an intermediate position. Oligonucleotides should not contain more than 10% consecutive heterologies to guarantee a stable pairing with the target dsDNA. Theoretical modeling cannot replace experiments, but we believe that our model can considerably accelerate optimization of oligonucleotides for gene therapy by predicting their pairing dynamics with the target dsDNA

    WHO global research priorities for antimicrobial resistance in human health

    Get PDF
    The WHO research agenda for antimicrobial resistance (AMR) in human health has identified 40 research priorities to be addressed by the year 2030. These priorities focus on bacterial and fungal pathogens of crucial importance in addressing AMR, including drug-resistant pathogens causing tuberculosis. These research priorities encompass the entire people-centred journey, covering prevention, diagnosis, and treatment of antimicrobial-resistant infections, in addition to addressing the overarching knowledge gaps in AMR epidemiology, burden and drivers, policies and regulations, and awareness and education. The research priorities were identified through a multistage process, starting with a comprehensive scoping review of knowledge gaps, with expert inputs gathered through a survey and open call. The priority setting involved a rigorous modified Child Health and Nutrition Research Initiative approach, ensuring global representation and applicability of the findings. The ultimate goal of this research agenda is to encourage research and investment in the generation of evidence to better understand AMR dynamics and facilitate policy translation for reducing the burden and consequences of AMR
    corecore