9 research outputs found
Using delay differential equations in models of cardiac electrophysiology
In cardiac physiology, electrical alternans is a phenomenon characterized by long-short alternations in the action potential duration of cardiac myocytes that give rise to complex spatiotemporal dynamics in tissue. Experiments and clinical measurements indicate that alternans can be a precursor of life-threatening arrhythmias, such as cardiac _brillation. Despite the importance of alternans in the study of cardiac disease, many mathematical models developed to describe cardiac electrophysiology at the cellular level are not able to produce this phenomenon. As a potential remedy to this de_ciency, we introduce short time-delays in some formulations of existing cardiac cell models that are based on Ordinary Di_erential Equations (ODEs). Many processes within cardiac cells involve delays in sensing and responding to changes. In addition, delay di_erential equations (DDEs) are known to give rise to complex dynamical properties in mathematical models. In biological modeling, DDEs have been applied to epidemiology, population dynamics, immunology, and neural networks. Therefore, DDEs can potentially represent mechanisms that result in complex dynamics both at the cellular level and at the tissue level. In this thesis, we propose DDE-based formulations for ion channel models based on the Hodgkin-Huxley formalism that can induce alternans in single-cell simulations in many models found in the literature. We also show that these modi_cations can destabilize spiral waves and produce spiral breakups in two-dimensional simulations, which is a typical model of cardiac _brillation. However, the new DDE-based formulations introduce new computational challenges due to the need for storing and retrieving past values of variables. Therefore, we present novel numerical methods to overcome these challenges and enable e_cient DDE-based studies at the tissue level in standard computational environments. We _nd that the proposed methods decrease memory usage by up to 95% in cardiac tissue simulations compared to straightforward history management algorithms available in widely used DDE solvers.Em fisiologia cardíaca, alternans elétrica _e um fenômeno caracterizado pela alternância entre potenciais de ação longos e curtos que dá origem a complexos comportamentos espaço-temporais em tecido. Experimentos e medições clínicas indicam que alternans pode ser um precursor de perigosas arritmias, como fibrilação ventricular ou morte súbita. Apesar da importância do alternans no estudo de doenças cardíacas, muitos modelos matemáticos para a eletrofisiologia de células cardíacas não são capazes de reproduzir este fenômeno. Como um potencial remédio para esta deficiência, introduzimos curtos atrasos de tempo em algumas formulações de modelos preexistentes para células cardíacas que são baseados em Equações Diferenciais Ordinárias (EDOs). Vários processos em células cardíacas envolvem atrasos de sensibilidade e de resposta a mudanças em variáveis fisiológicas. Além disso, equações diferenciais com atraso (DDEs) são conhecidas por dar origem a complexas propriedades dinâmicas em modelos matemáticos. Em modelagem biológica, DDEs têm sido aplicadas em epidemiologia, dinâmica populacional, imunologia e redes neurais. Portanto, DDEs podem representar mecanismos que resultam em dinâmicas complexas tanto no nível celular, quanto no nível do tecido. Nesta tese, propomos formulações baseadas em DDEs para modelos de canais iônicos descritos pelo formalismo de Hodgkin-Huxley. Tais formulações são capazes de induzir alternans em simulações celulares envolvendo vários modelos encontrados na literatura. Nós também mostramos que essas modificações podem desestabilizar e quebrar ondas espirais em simulações bidimensionais de propagação elétrica, o que é típico de fibrilação cardíaca. Entretanto, as formulações propostas introduzem novos desafios computacionais devido à necessidade de armazenar e recuperar valores passados de variáveis. Deste modo, nós apresentamos novos métodos numéricos para superar tais desafios e permitir a eficiente simulação de modelos baseados em DDEs no nível do tecido cardíaco. Os métodos propostos foram capazes de diminuir o uso de memória em até 95% em comparação aos algoritmos largamente utilizados na solução numérica de DDEs. Assim, os novos modelos baseados em DDEs e os eficientes métodos numéricos propostos nesta tese contribuem para o estudo de arritmias cardíacas fatais através de modelagem computacional
Efeito de diferentes ambientes climáticos sobre características fisiológicas de bezerros mestiços (Holandês X Gir)
The aim of this work was to verify the adaptability of crossbred calves (Holstein x Gyr) created in the field and in the facilities in Bom Jesus, PI. Six crossbred calves (Holstein x Gyr) were distributed in two treatments: T1= Field and T2= Facilities, with three animals in each, with 32 repeated measurements over time, totaling 192 observations (6 animals x 32 repetitions per animal) during the experimental period. The physiological characteristics, such as respiratory rate (RR), heart rate (HR), rectal temperature (RT), and the sweating rate (SR) were recorded. The meteorological variables were: air temperature (AT), relative humidity (RH), globe temperature index and humidity (BGT1 and BGT2), where BGT1 was inside the facilities and BGT2 in the open field. All weather variables showed significant differences (p<0.05) between shifts (morning and afternoon). It was found that RT and SR showed no significant difference (p>0.05). The RR was higher (p<0.05) for T1, with an average of 55.88 mov/min. There was a significant difference (p<0.05) between treatments for HR, with averages of 92.19 and 86.25 bat/min. for T1 and T2, respectively. According to the results it can be stated that the facilities for calves positively influenced the performance of heat loss, giving values closer to the comfort zone.Objetivou-se neste trabalho verificar a adaptabilidade de bezerros mestiços (Holandês x Gir) criados a campo e nas instalações, em Bom Jesus, PI. Foram utilizados seis bezerros mestiços (Holandês x Gir) distribuídos em dois tratamentos: T1= Campo e T2= Instalações, com três animais em cada um, e mensurou-se 32 medidas repetidas no tempo, totalizando 192 observações (6 animais x 32 repetições por animal) durante o período experimental. Nos animais foram registradas as características fisiológicas como: a frequência respiratória (FR), frequência cardíaca (FC), temperatura retal (TR) e a taxa de sudação (TS). As variáveis meteorológicas foram: Temperatura do Ar (TA), Umidade Relativa do Ar (UR), Índice de Temperatura de Globo e Umidade (ITGU1 e ITGU2), onde ITGU1 estava dentro das instalações e o ITGU2 no campo aberto. Todas as variáveis meteorológicas apresentaram diferença significativa (p<0,05) entre os turnos (manhã e tarde). Verificou-se que TR e TS não apresentaram diferença significativa (p>0,05). A FR foi maior (p<0,05) para T1, apresentando média de 55,88 mov/min. Houve diferença significativa (p<0,05) entre os tratamentos para a FC, com médias de 92,19 e 86,25 bat/min. para os T1 e T2, respectivamente. De acordo com os resultados obtidos pode-se afirmar que as instalações para bezerros influenciaram positivamente no desempenho da perda de calor, conferindo valores mais próximos da zona de conforto
The Changing Landscape for Stroke\ua0Prevention in AF: Findings From the GLORIA-AF Registry Phase 2
Background GLORIA-AF (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation) is a prospective, global registry program describing antithrombotic treatment patterns in patients with newly diagnosed nonvalvular atrial fibrillation at risk of stroke. Phase 2 began when dabigatran, the first non\u2013vitamin K antagonist oral anticoagulant (NOAC), became available. Objectives This study sought to describe phase 2 baseline data and compare these with the pre-NOAC era collected during phase 1. Methods During phase 2, 15,641 consenting patients were enrolled (November 2011 to December 2014); 15,092 were eligible. This pre-specified cross-sectional analysis describes eligible patients\u2019 baseline characteristics. Atrial fibrillation disease characteristics, medical outcomes, and concomitant diseases and medications were collected. Data were analyzed using descriptive statistics. Results Of the total patients, 45.5% were female; median age was 71 (interquartile range: 64, 78) years. Patients were from Europe (47.1%), North America (22.5%), Asia (20.3%), Latin America (6.0%), and the Middle East/Africa (4.0%). Most had high stroke risk (CHA2DS2-VASc [Congestive heart failure, Hypertension, Age 6575 years, Diabetes mellitus, previous Stroke, Vascular disease, Age 65 to 74 years, Sex category] score 652; 86.1%); 13.9% had moderate risk (CHA2DS2-VASc = 1). Overall, 79.9% received oral anticoagulants, of whom 47.6% received NOAC and 32.3% vitamin K antagonists (VKA); 12.1% received antiplatelet agents; 7.8% received no antithrombotic treatment. For comparison, the proportion of phase 1 patients (of N = 1,063 all eligible) prescribed VKA was 32.8%, acetylsalicylic acid 41.7%, and no therapy 20.2%. In Europe in phase 2, treatment with NOAC was more common than VKA (52.3% and 37.8%, respectively); 6.0% of patients received antiplatelet treatment; and 3.8% received no antithrombotic treatment. In North America, 52.1%, 26.2%, and 14.0% of patients received NOAC, VKA, and antiplatelet drugs, respectively; 7.5% received no antithrombotic treatment. NOAC use was less common in Asia (27.7%), where 27.5% of patients received VKA, 25.0% antiplatelet drugs, and 19.8% no antithrombotic treatment. Conclusions The baseline data from GLORIA-AF phase 2 demonstrate that in newly diagnosed nonvalvular atrial fibrillation patients, NOAC have been highly adopted into practice, becoming more frequently prescribed than VKA in Europe and North America. Worldwide, however, a large proportion of patients remain undertreated, particularly in Asia and North America. (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients With Atrial Fibrillation [GLORIA-AF]; NCT01468701
Técnicas computacionais para a solução numérica de modelos cardíacos baseados em cadeias de Markov
This work compares different numerical schemes for the solution of modern
electrophysiology models for cardiac myocytes. We present the Uniformization Method
- frequently applied to stochastic problems in computer science - which significantly
increase the numerical stability when used for the solution of cardiac models based on
Continuous Time Markov Chains, with respect to traditional explicit schemes such as
Rush-Larsen Method and Foward Euler Method. The Markov Chains formulation for
subcellular structures, e.g. ionic channels, enables an accurate description of the electrical
behaviour of cardiac cells for important experimental applications, for instance the
simulation of the effects of drugs or toxins on the electrical activity of the cell's membrane.
However, the differential equations associated with the Markov Chains for ionic channels
frequently cause problems of numerical stability, which severely limits the time step used
by explicit schemes. By using the Uniformization Method we could significantly increase
the time steps size in simulations of three models of cardiac electrophysiology based on
Markov Chains. In this work we show how the Uniformization Method can be used
along with other foward numerical schemes for the solution of these models, and how
these techniques significantly improve the computational performance with respect to
traditional numerical methods. In adition, we propose extensions of the Rush-Larsen
method and the Uniformization method with second-order accuracy for developing foward
time-adaptive techniques, aiming to reduce the computational cost of simulations with
strict numerical tolerances.Este trabalho compara diferentes esquemas numéricos para a solução de modelos modernos
para a eletrofisiologia de miócitos cardíacos. Apresentamos o Método de Uniformização -
amplamente utilizado para a solução de problemas estocásticos em ciência da computação
- e mostramos que, quando aplicado na resolução numérica de modelos cardíacos baseados
em Cadeias de Markov de Tempo contínuo, aumenta substancialmente a estabilidade
numérica em relação a métodos explícitos tradicionalmente utilizados, como o Método
de Rush-Larsen e o Método de Euler Explícito. A formulação em Cadeias de Markov
para estruturas subcelulares - como os canais iônicos - permite a descrição detalhada do
comportamento elétrico de células cardíacas para importantes aplicações experimentais,
como a simulação dos efeitos de drogas e toxinas sobre a atividade elétrica da membrana
celular. No entanto, as equações diferenciais associadas às Cadeias de Markov para
canais iônicos frequentemente trazem problemas de estabilidade numérica, que limitam
fortemente o passo de tempo utilizado por esquemas explícitos. Com a utilização do
Método de Uniformização foi possível aumentar significativamente a magnitude dos
passos de tempo utilizados em simulações de três modelos da eletrofisiologia cardíaca
baseados em Cadeias de Markov. Neste trabalho mostramos como é possível associar o
Método de Uniformização a outros esquemas explícitos para a solução numérica de tais
modelos, e como tais técnicas melhoram significativamente o desempenho computacional
em relação a métodos explícitos tradicionais. Além disso, propomos extensões do método
de Rush-Larsen e do método de Uniformização com segunda ordem de precisão para o
desenvolvimento de esquemas explícitos de passo de tempo adaptativo, visando reduzir
ainda mais o custo computacional em simulações com tolerância numérica estrita.FAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Gerai
Numerical methods applied to complex models of cardiac cell physiology
The computational modeling of cardiac physiology is an important tool for development of new techniques of treatment and diagnosis of cardiac disease. The research on realistic cellular models has encouraged the usage of Markov Chains for modeling cell substructures, i.g. the ionic channels that permeate the cell membrane.
In this work, we combinate different numerical techniques for these models’ evaluation, so the computational cost associated with the Markov models is softened by unconditionally stable methods, such as the Uniformization method. Besides, we search for solvers that keep a low memory consumption to enable the simulation of complex cardiac tissue.A modelagem computacional da fisiologia cardíaca é uma ferramenta importante que auxilia o desenvolvimento de técnicas de tratamento e o diagnóstico de doenças cardíacas. A busca por modelos celulares mais realistas tem incentivado o uso de Cadeias de Markov para a modelagem de estruturas subcelulares, por exemplo, para os canais iônicos que permeiam a membrana celular. Porém, a presença de Cadeias de Markov nos modelos baseados em equações diferenciais ordinárias aumenta os custos computacionais de resolução numérica.
Neste trabalho, avaliamos combinações de metodologias numéricas para a solução de tais modelos, de modo que o custo computacional adicionado por modelos de Markov seja atenuado por técnicas incondicionalmente estáveis, como o método de Uniformização, porém mantendo a utilização de tradicionais métodos condicionalmente estáveis, visando o baixo consumo em termos de memória RAM e a viabilização de simulação de complexos tecidos cardíacos
Reactive interstitial and reparative fibrosis as substrates for cardiac ectopic pacemakers and reentries
This book constitutes the refereed proceedings of the 4th International Conference on Bioinformatics and Biomedical Engineering, IWBBIO 2016, held in Granada, Spain, in April 2016.
The 69 papers presented were carefully reviewed and selected from 286 submissions. The scope of the conference spans the following areas: bioinformatics for healthcare and diseases; biomedical image analysis; biomedical signal analysis; computational systems for modeling biological processes; eHealth; tools for next generation sequencing data analysis; assistive technology for people with neuromotor disorders; fundamentals of biological dynamics and maximization of the information extraction from the experiments in the biological systems; high performance computing in bioinformatics, computational biology and computational chemistry; human behavior monitoring, analysis and understanding; pattern recognition and machine learning in the -omics sciences; and resources for bioinformatics.Dangerous cardiac arrhythmias have been frequently associated
with focal sources of fast pulses, i.e. ectopic pacemakers. However,
there is a lack of experimental evidences that could explain how ectopic
pacemakers could be formed in cardiac tissue. In recent studies, we have
proposed a new theory for the genesis of ectopic pacemakers in pathological
cardiac tissues: reentry inside microfbrosis, i.e., a small region where
excitable myocytes and non-conductive material coexist. In this work,
we continue this investigation by comparing different types of fibrosis,
reparative and reactive interstitial fibrosis. We use detailed and modern
models of cardiac electrophysiology that account for the micro-structure
of cardiac tissue. In addition, for the solution of our models we use, for
the first time, a new numerical algorithm based on the Uniformization
method. Our simulation results suggest that both types of fibrosis can
support reentries, and therefore can generate in-silico ectopic pacemakers.
However, the probability of reentries differs quantitatively for the
different types of fibrosis. In addition, the new Uniformization method
yields 20-fold increase in cardiac tissue simulation speed and, therefore,
was an essential technique that allowed the execution of over a thousand
of simulations.Peer Reviewe