122 research outputs found

    Benchmarking phasing software with a whole-genome sequenced cattle pedigree.

    Full text link
    peer reviewed[en] BACKGROUND: Accurate haplotype reconstruction is required in many applications in quantitative and population genomics. Different phasing methods are available but their accuracy must be evaluated for samples with different properties (population structure, marker density, etc.). We herein took advantage of whole-genome sequence data available for a Holstein cattle pedigree containing 264 individuals, including 98 trios, to evaluate several population-based phasing methods. This data represents a typical example of a livestock population, with low effective population size, high levels of relatedness and long-range linkage disequilibrium. RESULTS: After stringent filtering of our sequence data, we evaluated several population-based phasing programs including one or more versions of AlphaPhase, ShapeIT, Beagle, Eagle and FImpute. To that end we used 98 individuals having both parents sequenced for validation. Their haplotypes reconstructed based on Mendelian segregation rules were considered the gold standard to assess the performance of population-based methods in two scenarios. In the first one, only these 98 individuals were phased, while in the second one, all the 264 sequenced individuals were phased simultaneously, ignoring the pedigree relationships. We assessed phasing accuracy based on switch error counts (SEC) and rates (SER), lengths of correctly phased haplotypes and the probability that there is no phasing error between a pair of SNPs as a function of their distance. For most evaluated metrics or scenarios, the best software was either ShapeIT4.1 or Beagle5.2, both methods resulting in particularly high phasing accuracies. For instance, ShapeIT4.1 achieved a median SEC of 50 per individual and a mean haplotype block length of 24.1 Mb (scenario 2). These statistics are remarkable since the methods were evaluated with a map of 8,400,000 SNPs, and this corresponds to only one switch error every 40,000 phased informative markers. When more relatives were included in the data (scenario 2), FImpute3.0 reconstructed extremely long segments without errors. CONCLUSIONS: We report extremely high phasing accuracies in a typical livestock sample. ShapeIT4.1 and Beagle5.2 proved to be the most accurate, particularly for phasing long segments and in the first scenario. Nevertheless, most tools achieved high accuracy at short distances and would be suitable for applications requiring only local haplotypes

    Genome-wide association scan for QTL and their positional candidate genes associated with internal organ traits in chickens

    Get PDF
    Background: Poultry breeding programs have been focused on improvement of growth and carcass traits, however, this has resulted in correlated changes in internal organ weights and increased incidence of metabolic disorders. These disorders can affect feed efficiency or even cause death. We used a high density SNP array (600 K, Affymetrix) to estimate genomic heritability, perform genome-wide association analysis, and identify genomic regions and positional candidate genes (PCGs) associated with internal organ traits in an F2 chicken population. We integrated knowledge of haplotype blocks, selection signature regions and sequencing data to refine the list of PCGs. Results: Estimated genomic heritability for internal organ traits in chickens ranged from low (LUNGWT, 0.06) to high (GIZZWT, 0.45). A total of 20 unique 1 Mb windows identified on GGA1, 2, 4, 7, 12, 15, 18, 19, 21, 27 and 28 were significantly associated with intestine length, and weights or percentages of liver, gizzard or lungs. Within these windows, 14 PCGs were identified based on their biological functions: TNFSF11, GTF2F2, SPERT, KCTD4, HTR2A, RB1, PCDH7, LCORL, LDB2, NR4A2, GPD2, PTPN11, ITGB4 and SLC6A4. From those genes, two were located within haplotype blocks and three overlapped with selection signature regions. A total of 13,748 annotated sequence SNPs were in the 14 PCGs, including 156 SNPs in coding regions (124 synonymous, 26 non-synonymous, and 6 splice variants). Seven deleterious SNPs were identified in TNFSF11, NR4A2 or ITGB4 genes. Conclusions: The results from this study provide novel insights to understand the genetic architecture of internal organ traits in chickens. The QTL detection performed using a high density SNP array covered the whole genome allowing the discovery of novel QTL associated with organ traits. We identified PCGs within the QTL involved in biological processes that may regulate internal organ growth and development. Potential functional genetic variations were identified generating crucial information that, after validation, might be used in poultry breeding programs to reduce the occurrence of metabolic disorders

    Estimation of Breeding Values Using Different Densities of Snp to Inform Kinship in Broiler Chickens

    Get PDF
    Background: Traditionally, breeding values are estimated based on phenotypic and pedigree information using the numerator relationship (A) matrix. With the availability of genomic information, genome-wide markers can be included in the estimation of breeding values through genomic kinship. However, the density of genomic information used can impact the cost of implementation. The aim of this study was to compare the rank, accuracy, and bias of estimated breeding values (EBV) for organs [heart (HRT), liver (LIV), gizzard (GIZ), lungs (LUN)] and carcass [breast (BRST), drumstick (DRM) and thigh (THG)] weight traits in a broiler population using pedigree-based BLUP (PBLUP) and single-step genomic BLUP (ssGBLUP) methods using various densities of SNP and variants imputed from whole-genome sequence (WGS). Results: For both PBLUP and ssGBLUP, heritability estimates varied from low (LUN) to high (fHRT, LIV, GIZ, BRST, DRM and THG.) Regression coefficients values of EBV on genomic estimated breeding values (GEBV) were similar for both the high density (HD) and WGS sets of SNPs ranging from 0.87 to 0.99 across senarios. Conclusion: Results show no benefit of using WGS data compared to HD array data using an unweighted ssGBLUP. Our results suggest that 10% of the content of the HD array can yield unbiased and accurate EBV

    Unraveling genomic associations with feed efficiency and body weight traits in chickens through an integrative approach

    Get PDF
    Background: Feed efficiency and growth rate have been targets for selection to improve chicken production. The incorporation of genomic tools may help to accelerate selection. We genotyped 529 individuals using a high-density SNP chip (600 K, Affymetrix®) to estimate genomic heritability of performance traits and to identify genomic regions and their positional candidate genes associated with performance traits in a Brazilian F2 Chicken Resource population. Regions exhibiting selection signatures and a SNP dataset from resequencing were integrated with the genomic regions identified using the chip to refine the list of positional candidate genes and identify potential causative mutations. Results: Feed intake (FI), feed conversion ratio (FC), feed efficiency (FE) and weight gain (WG) exhibited low genomic heritability values (i.e. from 0.0002 to 0.13), while body weight at hatch (BW1), 35 days-of-age (BW35), and 41 days-of-age (BW41) exhibited high genomic heritability values (i.e. from 0.60 to 0.73) in this F2 population. Twenty unique 1-Mb genomic windows were associated with BW1, BW35 or BW41, located on GGA1–4, 6–7, 10, 14, 24, 27 and 28. Thirty-eight positional candidate genes were identified within these windows, and three of them overlapped with selection signature regions. Thirteen predicted deleterious and three high impact sequence SNPs in these QTL regions were annotated in 11 positional candidate genes related to osteogenesis, skeletal muscle development, growth, energy metabolism and lipid metabolism, which may be associated with body weight in chickens. Conclusions: The use of a high-density SNP array to identify QTL which were integrated with whole genome sequence signatures of selection allowed the identification of candidate genes and candidate causal variants. One novel QTL was detected providing additional information to understand the genetic architecture of body weight traits. We identified QTL for body weight traits, which were also associated with fatness in the same population. Our findings form a basis for further functional studies to elucidate the role of specific genes in regulating body weight and fat deposition in chickens, generating useful information for poultry breeding programs

    Integration of genome wide association studies and whole genome sequencing provides novel insights into fat deposition in chicken

    Get PDF
    Excessive fat deposition is a negative factor for poultry production because it reduces feed efficiency, increases the cost of meat production and is a health concern for consumers. We genotyped 497 birds from a Brazilian F2 Chicken Resource Population, using a high-density SNP array (600 K), to estimate the genomic heritability of fat deposition related traits and to identify genomic regions and positional candidate genes (PCGs) associated with these traits. Selection signature regions, haplotype blocks and SNP data from a previous whole genome sequencing study in the founders of this chicken F2 population were used to refine the list of PCGs and to identify potential causative SNPs. We obtained high genomic heritabilities (0.43–0.56) and identified 22 unique QTLs for abdominal fat and carcass fat content traits. These QTLs harbored 26 PCGs involved in biological processes such as fat cell differentiation, insulin and triglyceride levels, and lipid biosynthetic process. Three of these 26 PCGs were located within haplotype blocks there were associated with fat traits, five overlapped with selection signature regions, and 12 contained predicted deleterious variants. The identified QTLs, PCGs and potentially causative SNPs provide new insights into the genetic control of fat deposition and can lead to improved accuracy of selection to reduce excessive fat deposition in chickens

    Doença do refluxo gastroesofágico: métodos diagnósticos e manejo terapêutico

    Get PDF
    A Doença do Refluxo Gastroesofágico (DRGE) é uma patologia gastrointestinal que ocorre após o refluxo da secreção ácida presente no estômago em direção ao esôfago. Trata-se de uma patologia que afeta cerca de 20% dos adultos nas sociedades ocidentais. Nos Estados Unidos, até 20% dos habitantes relatam sintomas de DRGE, algo que representa um grande problema de saúde. No que se refere a fisiopatologia da doença, sabe-se que a exposição crônica da mucosa do esôfago ao conteúdo ácido é responsável por causar os sintomas clássicos da doença: pirose e regurgitação, além de favorecer o processo de metaplasia ou displasia epitelial. Ademais, essa acidificação da mucosa esofágica distal pode estar diretamente relacionada com algumas manifestações extra esofágicas da DRGE. Entre os sintomas da DRGE a pirose é o mais frequente. A regurgitação é outro sintoma clássico e ocorre quando o refluxo do conteúdo gástrico atinge a cavidade oral podendo gerar gosto amargo. O diagnóstico da DRGE, na maior parte das vezes, pode ser feito de forma exclusivamente clínica. Deve-se lançar mão dos exames complementares somente na presença de sinais de alarme ou sintomas atípicos, que podem nos fazer pensar em complicações da doença. Dentre os exames complementares, para melhor avaliação de possíveis complicações da doença, pode-se realizar a Endoscopia digestiva alta, a Phmetria de 24h (com ou sem impedanciometria), esofagomanometria e a esofagografia baritada. O tratamento clínico para a DRGE está baseado na redução dos sintomas resultantes do refluxo gastrointestinal, por meio da diminuição da secreção ácida, todavia, o tratamento cirúrgico pode ser uma opção para os pacientes em que a terapêutica clínica foi ineficaz, que têm formas complexas de DRGE ou aqueles que requerem uso contínuo de medicação

    Câncer de vesícula biliar - diagnóstico diferencial de icterícia obstrutiva: relato de dois casos: Gallblader câncer – differential diagnosis of obstructive jaundice: report of two cases

    Get PDF
    Introdução: O câncer da vesícula biliar é um tumor silencioso e de alto índice letal. Possui um diagnóstico precoce difícil de ser realizado e consequente baixa sobrevida. Objetivo: Relatar dois casos de câncer de vesícula biliar com enfoque no diagnóstico precoce e diferencial da icterícia obstrutiva. Método: Relato de dois casos de pacientes portadores de câncer de vesícula biliar associado a revisão da literatura sobre o tema para discussão. Conclusão: O diagnóstico precoce impacta de forma positiva no tratamento do paciente, aumentando por consequência sua sobrevida
    • …
    corecore