265 research outputs found

    Aerodynamic characteristics of a small-scale straight and swept-back wing with knee-blown jet flaps

    Get PDF
    Two sting-mounted, 50.8 cm (20 in.) span, knee-blown, jet-flap models were tested in a large (2.1- by 2.5-m (7- by 10-ft) subsonic wind tunnel. A straight- and swept-wing model were tested with fixed flap deflection with various combinations of full-span leading-edge slats. The swept-wing model was also tested with wing tip extensions. Data were taken at angles-of-attack between 0 deg and 40 deg, at dynamic pressures between 143.6 N/sq m (3 lb/sq ft) and 239.4 N/sq m (5 lb/sq ft), and at Reynolds numbers (based on wing chord) ranging from 100,000 to 132,000. Jet flap momentum blowing coefficients up to 10 were used. Lift, drag, and pitching-moment coefficients, and exit flow profiles for the flap blowing are presented in graphical form without analysis

    Test ion transport in a collisional, field-reversed configuration

    Full text link
    Diffusion of test-ions in a flux-coil generated, collisional, field-reversed configuration is measured via time-resolved tomographic reconstruction of Ar+ optical emission in the predominantly nitrogen plasma. Azimuthal test ion diffusion across magnetic field lines is found to be classical during the stable period of the discharge. Test ion radial confinement is enhanced by a radial electric field, reducing the observed outward radial transport rate below predictions based solely on classical cross-field diffusion rates. Test ion diffusion is ∼500m2s-1 during the stable period of the discharge. The electric field inferred from plasma potential measurements and from equilibrium calculations is consistent with the observed reduction in argon transport. © 2014 IOP Publishing Ltd

    Altered Expression of Insulin Receptor Isoforms in Breast Cancer

    Get PDF
    PURPOSE: Insulin-like growth factor (IGF) signaling through human insulin receptor isoform A (IR-A) contributes to tumorigenesis and intrinsic resistance to anti-IGF1R therapy. In the present study, we (a) developed quantitative TaqMan real time-PCR-based assays (qRT-PCR) to measure human insulin receptor isoforms with high specificity, (b) evaluated isoform expression levels in molecularly-defined breast cancer subtypes, and (c) identified the IR-A:IR-B mRNA ratio as a potential biomarker guiding patient stratification for anti-IGF therapies. EXPERIMENTAL DESIGN: mRNA expression levels of IR-A and IR-B were measured in 42 primary breast cancers and 19 matched adjacent normal tissues with TaqMan qRT-PCR assays. The results were further confirmed in 165 breast cancers. The tumor samples were profiled using whole genome microarrays and subsequently subtyped using the PAM50 breast cancer gene signature. The relationship between the IR-A:IR-B ratio and cancer subtype, as well as markers of proliferation were characterized. RESULTS: The mRNA expression levels of IR-A in the breast tumors were similar to those observed in the adjacent normal tissues, while the mRNA levels of IR-B were significantly decreased in tumors. The IR-A:IR-B ratio was significantly higher in luminal B breast cancer than in luminal A. Strong concordance between the IR-A:IR-B ratio and the composite Oncotype DX proliferation score was observed for stratifying the latter two breast cancer subtypes. CONCLUSIONS: The reduction in IR-B expression is the key to the altered IR-A:IR-B ratio observed in breast cancer. The IR-A:IR-B ratio may have biomarker utility in guiding a patient stratification strategy for an anti-IGF therapeutic

    Type I Interferon: Potential Therapeutic Target for Psoriasis?

    Get PDF
    Background: Psoriasis is an immune-mediated disease characterized by aberrant epidermal differentiation, surface scale formation, and marked cutaneous inflammation. To better understand the pathogenesis of this disease and identify potential mediators, we used whole genome array analysis to profile paired lesional and nonlesional psoriatic skin and skin from healthy donors. Methodology/Principal Findings: We observed robust overexpression of type I interferon (IFN)–inducible genes and genomic signatures that indicate T cell and dendritic cell infiltration in lesional skin. Up-regulation of mRNAs for IFN-a subtypes was observed in lesional skin compared with nonlesional skin. Enrichment of mature dendritic cells and 2 type I IFN–inducible proteins, STAT1 and ISG15, were observed in the majority of lesional skin biopsies. Concordant overexpression of IFN-c and TNF-a–inducible gene signatures occurred at the same disease sites. Conclusions/Significance: Up-regulation of TNF-a and elevation of the TNF-a–inducible gene signature in lesional skin underscore the importance of this cytokine in psoriasis; these data describe a molecular basis for the therapeutic activity of anti–TNF-a agents. Furthermore, these findings implicate type I IFNs in the pathogenesis of psoriasis. Consistent and significant up-regulation of type I IFNs and their associated gene signatures in psoriatic skin suggest that type I IFNs may b

    Dusty Punch Cards and an Eternal Enigma: High-Density Lipoproteins and Atherosclerosis

    Full text link
    Epidemiological, clinical, and experimental evidence has accumulated during the last decades suggesting that high-density lipoproteins (HDLs) may protect from atherosclerosis and its clinical consequences. However, more than 55 years after the first description of the link between HDL and heart attacks, many facets of the biochemistry, function, and clinical significance of HDL remain enigmatic. This applies particularly to the completely unexpected results that became available from some recent clinical trials of nicotinic acid and of inhibitors of cholesteryl ester transfer protein (CETP). The concept that raising HDL cholesterol by pharmacological means would decrease the risk of vascular disease has therefore been challenged
    corecore