137 research outputs found

    Social Life in Public Space as a Commons: The Case of Public Art

    Get PDF
    This thesis conceptualises social life in public space as a collective resource, constituted by the bundle of relations among individuals and between individuals and the built environment. The case study of art in public space offers a close up on a stratum of the way social life in public space functions, exploring four experiences of public art: Santa Claus in Rotterdam, I am Queen Mary in Copenhagen; Triumphs and Laments in Rome, and Carmela in Barcelona

    iGlarLixi effectively reduces residual hyperglycaemia in patients with type 2 diabetes on basal insulin: A post hoc analysis from the LixiLan-L study

    Get PDF
    Globally, nearly half of patients with type 2 diabetes (T2D) do not successfully achieve target HbA1c with basal insulin, despite meeting fasting plasma glucose (FPG) targets. In this post hoc analysis of the LixiLan-L study, we determined whether iGlarLixi, a fixed-ratio combination of insulin glargine Gla-100 (iGlar) and the glucagon-like peptide-1 receptor agonist lixisenatide (Lixi), addresses the challenge of reducing residual hyperglycaemia in patients with T2D. In LixiLan-L, a randomized, open-label study, 1018 patients with T2D on basal insulin for ≥6 months ± oral antidiabetes drugs entered a 6-week run-in period, during which they were switched to and/or optimized for a daily dose of iGlar while continuing only metformin. Following the run-in period, 736 patients were then randomized to receive iGlarLixi or were continued on iGlar for 30 weeks ± metformin. Residual hyperglycaemia was defined as HbA1c ≥ 7.0% despite FPG of <140 mg/dL. The proportion of patients with residual hyperglycaemia was similar in both treatment arms at screening (~~42%), and increased after the run-in period (~~62%). After 30 weeks, the proportion of patients with residual hyperglycaemia declined to 23.8% in the iGlarLixi versus 47.1% in the iGlar arm (P <.0001). The proportion of patients achieving both HbA1c (<7.0%) and FPG (<140 mg/dL) targets was higher in the iGlarLixi compared with the iGlar arm (50.3% vs. 27.4%, respectively; P <.0001). iGlarLixi effectively reduces residual hyperglycaemia in patients with T2D on basal insulin therapy

    Exploring the ability of LARS2 carboxy-terminal domain in rescuing the MELAS phenotype

    Get PDF
    The m.3243A>G mutation within the mitochondrial mt-tRNALeu(UUR) gene is the most prevalent variant linked to mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome. This pathogenic mutation causes severe impairment of mitochondrial protein synthesis due to alterations of the mutated tRNA, such as reduced aminoacylation and a lack of post-transcriptional modification. In transmitochondrial cybrids, overexpression of human mitochondrial leucyl-tRNA synthetase (LARS2) has proven effective in rescuing the phenotype associated with m.3243A>G substitution. The rescuing activity resides in the carboxy-terminal domain (Cterm) of the enzyme; however, the precise molecular mechanisms underlying this process have not been fully elucidated. To deepen our knowledge on the rescuing mechanisms, we demonstrated the interactions of the Cterm with mutated mt-tRNALeu(UUR) and its precursor in MELAS cybrids. Further, the effect of Cterm expression on mitochondrial functions was evaluated. We found that Cterm ameliorates de novo mitochondrial protein synthesis, whilst it has no effect on mt-tRNALeu(UUR) steady-state levels and aminoacylation. Despite the complete recovery of cell viability and the increase in mitochondrial translation, Cterm-overexpressing cybrids were not able to recover bioenergetic competence. These data suggest that, in our MELAS cell model, the beneficial effect of Cterm may be mediated by factors that are independent of the mitochondrial bioenergetics

    Antitumor activity of a novel anti-vascular endothelial growth factor receptor-1 monoclonal antibody that does not interfere with ligand binding

    Get PDF
    Vascular endothelial growth factor receptor-1 (VEGFR-1) is a tyrosine kinase transmembrane receptor that has also a soluble isoform containing most of the extracellular ligand binding domain (sVEGFR-1). VEGF-A binds to both VEGFR-2 and VEGFR-1, whereas placenta growth factor (PlGF) interacts exclusively with VEGFR-1. In this study we generated an anti-VEGFR-1 mAb (D16F7) by immunizing BALB/C mice with a peptide that we had previously reported to inhibit angiogenesis and endothelial cell migration induced by PlGF. D16F7 did not affect binding of VEGF-A or PlGF to VEGFR-1, thus allowing sVEGFR-1 to act as decoy receptor for these growth factors, but it hampered receptor homodimerization and activation. D16F7 inhibited both the chemotactic response of human endothelial, myelomonocytic and melanoma cells to VEGFR-1 ligands and vasculogenic mimicry by tumor cells. Moreover, D16F7 exerted in vivo antiangiogenic effects in a matrigel plug assay. Importantly, D16F7 inhibited tumor growth and was well tolerated by B6D2F1 mice injected with syngeneic B16F10 melanoma cells. The antitumor effect was associated with melanoma cell apoptosis, vascular abnormalities and decrease of both monocyte/macrophage infiltration and myeloid progenitor mobilization. For all the above, D16F7 may be exploited in the therapy of metastatic melanoma and other tumors or pathological conditions involving VEGFR-1 activation

    Known drugs identified by structure-based virtual screening are able to bind sigma-1 receptor and increase growth of huntington disease patient-derived cells

    Get PDF
    Huntington disease (HD) is a devastating and presently untreatable neurodegenerative disease characterized by progressively disabling motor and mental manifestations. The sigma-1 receptor (σ1R) is a protein expressed in the central nervous system, whose 3D structure has been recently determined by X-ray crystallography and whose agonists have been shown to have neuro-protective activity in neurodegenerative diseases. To identify therapeutic agents against HD, we have implemented a drug repositioning strategy consisting of: (i) Prediction of the ability of the FDA-approved drugs publicly available through the ZINC database to interact with σ1R by virtual screening, followed by computational docking and visual examination of the 20 highest scoring drugs; and (ii) Assessment of the ability of the six drugs selected by computational analyses to directly bind purified σ1R in vitro by Surface Plasmon Resonance and improve the growth of fibro-blasts obtained from HD patients, which is significantly impaired with respect to control cells. All six of the selected drugs proved able to directly bind purified σ1R in vitro and improve the growth of HD cells from both or one HD patient. These results support the validity of the drug repositioning procedure implemented herein for the identification of new therapeutic tools against HD

    Composition of KBO (50000) Quaoar

    Get PDF
    Aims. The objective of this work is to investigate the physical properties of objects beyond Neptune-the new frontiers of the Solar System-and in particular to study the surface composition of (50 000) Quaoar, a classical Transneptunian (or Kuiper Belt) object. Because of its distance from the Sun, Quaoar is expected to have preserved, to a degree, its original composition. Our goals are to determine to what degree this is true and to shed light on the chemical evolution of this icy body. Methods. We present new near-infrared (3.6 and 4.5 mu m) photometric data obtained with the Spitzer Space Telescope. These data complement high resolution, low signal-to-noise spectroscopic and photometric data obtained in the visible and near-infrared (0.4-2.3 mu m) at VLT-ESO and provide an excellent set of constraints in the model calculation process. We perform spectral modeling of the entire wavelength range-from 0.3 to 4.5 mu m by means of a code based on the Shkuratov radiative transfer formulation of the slab model. We also attempt to determine the temperature of H(2)O ice making use of the crystalline feature at 1.65 mu m. Results. We present a model confirming previous results regarding the presence of crystalline H(2)O and CH(4) ice, as well as C(2)H(6) and organic materials, on the surface of this distant icy body. We attempt a measurement of the temperature and find that stronger constraints on the composition are needed to obtain a precise determination. Conclusions. Model fits indicate that N(2) may be a significant component, along with a component that is bright at lambda > 3.3 mu m, which we suggest at this time could be amorphous H(2)O ice in tiny grains or thin grain coatings. Irradiated crystalline H(2)O could be the source of small-grained amorphous H(2)O ice. The albedo and composition of Quaoar, in particular the presence of N(2), if confirmed, make this TNO quite similar to Triton and Pluto

    On the possibility of measuring relativistic gravitational effects with a LAGEOS-LAGEOS II-OPTIS-mission

    Full text link
    In this paper we wish to preliminary investigate if it would be possible to use the orbital data from the proposed OPTIS mission together with those from the existing geodetic passive SLR LAGEOS and LAGEOS II satellites in order to perform precise measurements of some general relativistic gravitoelectromagnetic effects, with particular emphasis on the Lense-Thirring effect.Comment: Abridged version. 16 pages, no figures, 1 table. First results from the GGM01C Earth gravity model. GRACE data include

    Near-Native Protein Loop Sampling Using Nonparametric Density Estimation Accommodating Sparcity

    Get PDF
    Unlike the core structural elements of a protein like regular secondary structure, template based modeling (TBM) has difficulty with loop regions due to their variability in sequence and structure as well as the sparse sampling from a limited number of homologous templates. We present a novel, knowledge-based method for loop sampling that leverages homologous torsion angle information to estimate a continuous joint backbone dihedral angle density at each loop position. The φ,ψ distributions are estimated via a Dirichlet process mixture of hidden Markov models (DPM-HMM). Models are quickly generated based on samples from these distributions and were enriched using an end-to-end distance filter. The performance of the DPM-HMM method was evaluated against a diverse test set in a leave-one-out approach. Candidates as low as 0.45 Å RMSD and with a worst case of 3.66 Å were produced. For the canonical loops like the immunoglobulin complementarity-determining regions (mean RMSD <2.0 Å), the DPM-HMM method performs as well or better than the best templates, demonstrating that our automated method recaptures these canonical loops without inclusion of any IgG specific terms or manual intervention. In cases with poor or few good templates (mean RMSD >7.0 Å), this sampling method produces a population of loop structures to around 3.66 Å for loops up to 17 residues. In a direct test of sampling to the Loopy algorithm, our method demonstrates the ability to sample nearer native structures for both the canonical CDRH1 and non-canonical CDRH3 loops. Lastly, in the realistic test conditions of the CASP9 experiment, successful application of DPM-HMM for 90 loops from 45 TBM targets shows the general applicability of our sampling method in loop modeling problem. These results demonstrate that our DPM-HMM produces an advantage by consistently sampling near native loop structure. The software used in this analysis is available for download at http://www.stat.tamu.edu/~dahl/software/cortorgles/

    SnugDock: Paratope Structural Optimization during Antibody-Antigen Docking Compensates for Errors in Antibody Homology Models

    Get PDF
    High resolution structures of antibody-antigen complexes are useful for analyzing the binding interface and to make rational choices for antibody engineering. When a crystallographic structure of a complex is unavailable, the structure must be predicted using computational tools. In this work, we illustrate a novel approach, named SnugDock, to predict high-resolution antibody-antigen complex structures by simultaneously structurally optimizing the antibody-antigen rigid-body positions, the relative orientation of the antibody light and heavy chains, and the conformations of the six complementarity determining region loops. This approach is especially useful when the crystal structure of the antibody is not available, requiring allowances for inaccuracies in an antibody homology model which would otherwise frustrate rigid-backbone docking predictions. Local docking using SnugDock with the lowest-energy RosettaAntibody homology model produced more accurate predictions than standard rigid-body docking. SnugDock can be combined with ensemble docking to mimic conformer selection and induced fit resulting in increased sampling of diverse antibody conformations. The combined algorithm produced four medium (Critical Assessment of PRediction of Interactions-CAPRI rating) and seven acceptable lowest-interface-energy predictions in a test set of fifteen complexes. Structural analysis shows that diverse paratope conformations are sampled, but docked paratope backbones are not necessarily closer to the crystal structure conformations than the starting homology models. The accuracy of SnugDock predictions suggests a new genre of general docking algorithms with flexible binding interfaces targeted towards making homology models useful for further high-resolution predictions
    • …
    corecore