400 research outputs found

    Comprehensive study of proteasome inhibitors against Plasmodium falciparum laboratory strains and field isolates from Gabon

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The emergence and spread of <it>Plasmodium falciparum </it>resistance to almost all available antimalarial drugs necessitates the search for new chemotherapeutic compounds. The ubiquitin/proteasome system plays a major role in overall protein turnover, especially in fast dividing eukaryotic cells including plasmodia. Previous studies show that the 20S proteasome is expressed and catalytically active in plasmodia and treatment with proteasome inhibitors arrests parasite growth. This is the first comprehensive screening of proteasome inhibitors with different chemical modes of action against laboratory strains of <it>P. falciparum</it>. Subsequently, a selection of inhibitors was tested in field isolates from Lambaréné, Gabon.</p> <p>Methods</p> <p>Epoxomicin, YU101, YU102, MG132, MG115, Z-L<sub>3</sub>-VS, Ada-Ahx<sub>3</sub>-L<sub>3</sub>-VS, lactacystin, bortezomib (Velcade<sup>®</sup>), gliotoxin, PR11 and PR39 were tested and compared to chloroquine- and artesunate-activities in a standardized <it>in vitro </it>drug susceptibility assay against <it>P. falciparum </it>laboratory strains 3D7, D10 and Dd2. Freshly obtained field isolates from Lambaréné, Gabon, were used to measure the activity of chloroquine, artesunate, epoxomicin, MG132, lactacystin and bortezomib. Parasite growth was detected through histidine-rich protein 2 (HRP2) production. Raw data were fitted by a four-parameter logistic model and individual inhibitory concentrations (50%, 90%, and 99%) were calculated.</p> <p>Results</p> <p>Amongst all proteasome inhibitors tested, epoxomicin showed the highest activity in chloroquine-susceptible (IC50: 6.8 nM [3D7], 1.7 nM [D10]) and in chloroquine-resistant laboratory strains (IC50: 10.4 nM [Dd2]) as well as in field isolates (IC50: 8.5 nM). The comparator drug artesunate was even more active (IC50: 1.0 nM), whereas all strains were chloroquine-resistant (IC50: 113 nM).</p> <p>Conclusion</p> <p>The peptide α',β'-epoxyketone epoxomicin is highly active against <it>P. falciparum </it>regardless the grade of the parasite's chloroquine susceptibility. Therefore, inhibition of the proteasome is a highly promising strategy to develop new antimalarials. Epoxomicin can serve as a standard to compare new inhibitors with species-specific activity.</p

    Prospective evaluation of artemether-lumefantrine for the treatment of non-falciparum and mixed-species malaria in Gabon

    Get PDF
    Background: The recommendation of artemisinin combination therapy (ACT) as first-line treatment for uncomplicated falciparum malaria is supported by a plethora of high quality clinical trials. However, their recommendation for the treatment of mixed-species malaria and the large-scale use for the treatment of non-falciparum malaria in endemic regions is based on anecdotal rather than systematic clinical evidence. Methods: This study prospectively observed the efficacy of artemether-lumefantrine for the treatment of uncomplicated non-falciparum or mixed-species malaria in two routine district hospitals in the Central African country of Gabon. Results: Forty patients suffering from uncomplicated Plasmodium malariae, Plasmodium ovale or mixed-species malaria (including Plasmodium falciparum) presenting at the hospital received artemether-lumefantrine treatment and were followed up. All evaluable patients (n = 38) showed an adequate clinical and parasitological response on Day 28 after oral treatment with artemether-lumefantrine (95% confidence interval: 0.91,1). All adverse events were of mild to moderate intensity and completely resolved by the end of study. Conclusions: This first systematic assessment of artemether-lumefantrine treatment for P. malariae, P. ovale and mixed-species malaria demonstrated a high cure rate of 100% and a favourable tolerability profile, and thus lends support to the practice of treating non-falciparum or mixed-species malaria, or all cases of malaria without definite species differentiation, with artemether-lumefantrine in Gabon. Trial Registration: ClinicalTrials.gov Identifier: NCT0072577

    State and parameter estimation for model-based retinal laser treatment

    Get PDF
    We present an approach for state and parameter estimation in retinal laser treatment by a novel setup where both measurement and heating is performed by a single laser. In this medical application, the temperature that is induced by the laser in the patient's eye is critical for a successful and safe treatment. To this end, we pursue a model-based approach using a model given by a heat diffusion equation on a cylindrical domain, where the source term is given by the absorbed laser power. The model is parametric in the sense that it involves an absorption coefficient, which depends on the treatment spot and plays a central role in the input-output behavior of the system. After discretization, we apply a particularly suited parametric model order reduction to ensure real-time tractability while retaining parameter dependence. We augment known state estimation techniques, i.e., extended Kalman filtering and moving horizon estimation, with parameter estimation to estimate the absorption coefficient and the current state of the system. Eventually, we show first results for simulated and experimental data from porcine eyes. We find that, regarding convergence speed, the moving horizon estimation slightly outperforms the extended Kalman filter on measurement data in terms of parameter and state estimation, however, on simulated data the results are very similar

    Towards model-based temperature-control for retinal laser therapies

    Get PDF
    Sophisticated control designs for retinal laser therapies, such as model predictive control, allow for safer treatment and a uniform outcome irrespective of spatially varying parameters such as the absorption coefficient. To enable model-based control, the internal states and unknown parameters need to be estimated, which can be done using non-invasive temperature measurements. We present experimental results for joint state and parameter estimation using an extended Kalman filter and a moving horizon estimator. The experiments were conducted on ex vivo porcine eye&#39;s explants

    Novel approaches to whole sporozoite vaccination against malaria

    Get PDF
    AbstractThe parasitic disease malaria threatens more than 3 billion people worldwide, resulting in more than 200 million clinical cases and almost 600,000 deaths annually. Vaccines remain crucial for prevention and ultimately eradication of infectious diseases and, for malaria, whole sporozoite based immunization has been shown to be the most effective in experimental settings. In addition to immunization with radiation-attenuated sporozoites, chemoprophylaxis and sporozoites (CPS) is a highly efficient strategy to induce sterile protection in humans. Genetically attenuated parasites (GAP) have demonstrated significant protection in rodent studies, and are now being advanced into clinical testing. This review describes the existing pre-clinical and clinical data on CPS and GAP, discusses recent developments and examines how to transform these immunization approaches into vaccine candidates for clinical development

    Assessment of LED fluorescence microscopy for the diagnosis of Plasmodium falciparum infections in Gabon

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rapid and accurate diagnosis of malaria is central to clinical management and the prevention of drug-overuse, which may lead to resistance development, toxicity and economic losses. So far, light microscopy (LM) of Giemsa-stained thick blood smears is the gold standard. Under optimal conditions the procedure is fast and reliable; nevertheless a gain in speed would be a great advantage. Rapid diagnosis tests are an alternative, although they cost more and give qualitative instead of quantitative results. Light-emitting diode (LED) fluorescence microscopy (ledFM 400 ×, 1000 ×) may offer a reliable and cheap alternative, which can be used at the point of care.</p> <p>Methods</p> <p>LedFM and conventional fluorescence microscopy (uvFM) were compared to LM in 210 samples from patients with history of fever in the last 24 hours admitted to the Albert Schweitzer Hospital in Lambaréné, Gabon.</p> <p>Results</p> <p>Sensitivities were 99.1% for ledFM and 97.0% for uvFM, specificities 90.7% for ledFM 400 × and 92.6% for ledFM 1000 × and uvFM. High agreement was found in Bland-Altman-plot and Kappa coefficient (ledFM 1000 ×: 0.914, ledFM 400 × and uvFM: 0.895). The time to diagnosis for both FM methods was shorter compared to LM (LM: 43 min, uvFM: 16 min, ledFM 1000 ×: 14 min, ledFM 400 ×: 10 min).</p> <p>Conclusion</p> <p>ledFM is a reliable, accurate, fast and inexpensive tool for daily routine malaria diagnosis and may be used as a point of care diagnostic tool.</p

    Natural infection of Plasmodium brasilianum in humans: Man and monkey share quartan malaria parasites in the Venezuelan Amazon

    Get PDF
    AbstractBackgroundThe quartan malaria parasite Plasmodium malariae is the widest spread and best adapted human malaria parasite. The simian Plasmodium brasilianum causes quartan fever in New World monkeys and resembles P. malariae morphologically. Since the genetics of the two parasites are nearly identical, differing only in a range of mutations expected within a species, it has long been speculated that the two are the same. However, no naturally acquired infection with parasites termed as P. brasilianum has been found in humans until now.MethodsWe investigated malaria cases from remote Yanomami indigenous communities of the Venezuelan Amazon and analyzed the genes coding for the circumsporozoite protein (CSP) and the small subunit of ribosomes (18S) by species-specific PCR and capillary based-DNA sequencing.FindingsBased on 18S rRNA gene sequencing, we identified 12 patients harboring malaria parasites which were 100% identical with P. brasilianum isolated from the monkey, Alouatta seniculus. Translated amino acid sequences of the CS protein gene showed identical immunodominant repeat units between quartan malaria parasites isolated from both humans and monkeys.InterpretationThis study reports, for the first time, naturally acquired infections in humans with parasites termed as P. brasilianum. We conclude that quartan malaria parasites are easily exchanged between humans and monkeys in Latin America. We hypothesize a lack of host specificity in mammalian hosts and consider quartan malaria to be a true anthropozoonosis. Since the name P. brasilianum suggests a malaria species distinct from P. malariae, we propose that P. brasilianum should have a nomenclatorial revision in case further research confirms our findings. The expansive reservoir of mammalian hosts discriminates quartan malaria from other Plasmodium spp. and requires particular research efforts
    corecore