11 research outputs found

    A pragmatic, open-label, randomized controlled trial of Plasma-Lyte-148 versus standard intravenous fluids in children receiving kidney transplants (PLUTO)

    Get PDF
    Acute electrolyte and acid-base imbalance is experienced by many children following kidney transplant. This is partly because doctors give very large volumes of artificial fluids to keep the new kidney working. When severe, fluid imbalance can lead to seizures, cerebral edema and death. In this pragmatic, open-label, randomized controlled trial, we randomly assigned (1:1) pediatric kidney transplant recipients to Plasma-Lyte-148 or standard of care perioperative intravenous fluids (predominantly 0.45% sodium chloride and 0.9% sodium chloride solutions). We then compared clinically significant electrolyte and acid-base abnormalities in the first 72 hours post-transplant. The primary outcome, acute hyponatremia, was experienced by 53% of 68 participants in the Plasma-Lyte-148 group and 58% of 69 participants in the standard fluids group (odds ratio 0·77 (0·34 - 1·75)). Five of 16 secondary outcomes differed with Plasma-Lyte-148: hypernatremia was significantly more frequent (odds ratio 3·5 (1·1 - 10·8)), significantly fewer changes to fluid prescriptions were made (rate ratio 0·52 (0·40-0·67)), and significantly fewer participants experienced hyperchloremia (odds ratio 0·17 (0·07 - 0·40)), acidosis (odds ratio 0·09 (0·04 - 0·22)) and hypomagnesemia (odds ratio 0·21 (0·08 - 0·50)). No other secondary outcomes differed between groups. Serious adverse events were reported in 9% of participants randomized to Plasma-Lyte-148 and 7% of participants randomized to standard fluids. Thus, perioperative Plasma-Lyte-148 did not change the proportion of children who experienced acute hyponatremia compared to standard fluids. However fewer fluid prescription changes were made with Plasma-Lyte-148, while hyperchloremia and acidosis were less common

    Chronic Kidney Disease progression : from molecular pathways to urinary biomarkers

    No full text
    Pas de résuméChronic Kidney Disease (CKD) and its progression has become an important public health issue owing to its strong links to cardiovascular morbidity and mortality. To understand molecular pathways implicated the process of CKD progression is several-fold useful. It can enable drug development inhibiting identified pathways. It provides us with potentially measurable molecules for patient categorisation and treatment. In this translational medicine project, we move from the bench, understanding the role played by signal transducer and activator of transcription 3 (STAT3) to the bedside, measuring and identifying urinary molecules in patients all in the context of CKD progression. Thus we identified potential downstream effectors of STAT3 in CKD progression: lipocalin 2, TIMP1 and PDGFB. To achieve this we combined an approach of in vivo, in silico and in vitro methods. We observed on immunohistochemistry the activation (phosphorylation) specifically of tubular STAT3, in mice sensitive to subtotal nephrectomy (Nx) prior to their development of fibrosis and confirmed that genetic deletion of STAT3 in the tubules protected the mice kidneys. Exploiting microarray data, from remnant kidneys of mice with different susceptibilities to Nx, and combining this with in silico data of potential STAT3 DNA binding sites (DBS) provided genes differentially regulated by STAT3. In the upregulated genes, in which the DBS were conserved in 4 or more species, we identified and confirmed on RT-PCR (both in the remnant kidneys and in a mouse cell line and independently in IMCD3 cells), genes regulated by deletion of STAT3. We specifically studied secreted factors along the hypothesis of a crosstalk between renal tubular cells with activated STAT3 inducing secreted factors to activate nearby resident fibroblasts to secrete collagen and thus induce fibrosis. In parallel, we examined molecules known to be involved in the pathological processes of CKD progression. We rigorously validated the use of 16 commercialised ELISA kits in the urine following strict industry criteria and excluded 14 failing to meet the criteria in a pilot study of 75 subjects. We next took advantage of a well-characterised cohort of 229 patients with CKD with different rates of progression, as determined by serially measured glomerular filtration rates (mGFRs). We measured by the validated ELISA kits the molecules in the urine collected at baseline visit. We identified a combination of urinary biomarkers that can predict fast progression (i.e. degradation in mGFR at > 10% baseline mGFR/ year) after taking into account demographic risk factors for progression and albuminuria. The three biomarkers identified were EGF, MCP1 and TGF-α

    Advanced chronic kidney disease among UK children.

    Get PDF
    The UK Renal Registry currently collects information on UK children with kidney failure requiring long-term kidney replacement therapy (KRT), which supports disease surveillance and auditing of care and outcomes; however, data are limited on children with chronic kidney disease (CKD) not on KRT. METHODS: In March 2020, all UK Paediatric Nephrology centres submitted data on children aged <16 years with severely reduced kidney function as of December 2019, defined as an estimated glomerular filtration rate <30 mL/min/1.73 m2. RESULTS: In total, 1031 children had severe CKD, the majority of whom (80.7%) were on KRT. The overall prevalence was 81.2 (95% CI 76.3 to 86.3) per million of the age-related population. CONCLUSIONS: The prevalence of severe CKD among UK children is largely due to a high proportion of children on long-term KRT. Expanding data capture to include children with CKD before reaching failure will provide greater understanding of the CKD burden in childhood

    Stat3 Controls Tubulointerstitial Communication during CKD

    No full text
    In CKD, tubular cells may be involved in the induction of interstitial fibrosis, which in turn, leads to loss of renal function. However, the molecular mechanisms that link tubular cells to the interstitial compartment are not clear. Activation of the Stat3 transcription factor has been reported in tubular cells after renal damage, and Stat3 has been implicated in CKD progression. Here, we combined an experimental model of nephron reduction in mice from different genetic backgrounds and genetically modified animals with in silico and in vitro experiments to determine whether the selective activation of Stat3 in tubular cells is involved in the development of interstitial fibrosis. Nephron reduction caused Stat3 phosphorylation in tubular cells of lesion-prone mice but not in resistant mice. Furthermore, specific deletion of Stat3 in tubular cells significantly reduced the extent of interstitial fibrosis, which correlated with reduced fibroblast proliferation and matrix synthesis, after nephron reduction. Mechanistically, in vitro tubular Stat3 activation triggered the expression of a specific subset of paracrine profibrotic factors, including Lcn2, Pdgfb, and Timp1. Together, our results provide a molecular link between tubular and interstitial cells during CKD progression and identify Stat3 as a central regulator of this link and a promising therapeutic target

    Combining robust urine biomarkers to assess chronic kidney disease progressionResearch in context

    No full text
    Summary: Background: Urinary biomarkers may improve the prediction of chronic kidney disease (CKD) progression. Yet, data reporting the applicability of most commercial biomarker assays to the detection of their target analyte in urine together with an evaluation of their predictive performance are scarce. Methods: 30 commercial assays (ELISA) were tested for their ability to quantify the target analyte in urine using strict (FDA-approved) validation criteria. In an exploratory analysis, LASSO (Least Absolute Shrinkage and Selection Operator) logistic regression analysis was used to identify potentially complementary biomarkers predicting fast CKD progression, determined as the 51CrEDTA clearance-based measured glomerular filtration rate (mGFR) decline (>10% per year) in a subsample of 229 CKD patients (mean age, 61 years; 66% men; baseline mGFR, 38 mL/min) from the NephroTest prospective cohort. Findings: Among the 30 assays, directed against 24 candidate biomarkers, encompassing different pathophysiological mechanisms of CKD progression, 16 assays fulfilled the FDA-approved criteria. LASSO logistic regressions identified a combination of five biomarkers including CCL2, EGF, KIM1, NGAL, and TGF-α that improved the prediction of fast mGFR decline compared to the kidney failure risk equation variables alone: age, gender, mGFR, and albuminuria. Mean area under the curves (AUC) estimated from 100 re-samples was higher in the model with than without these biomarkers, 0.722 (95% confidence interval 0.652–0.795) vs. 0.682 (0.614–0.748), respectively. Fully-adjusted odds-ratios (95% confidence interval) for fast progression were 1.87 (1.22, 2.98), 1.86 (1.23, 2.89), 0.43 (0.25, 0.70), 1.10 (0.71, 1.83), 0.55 (0.33, 0.89), and 2.99 (1.89, 5.01) for albumin, CCL2, EGF, KIM1, NGAL, and TGF-α, respectively. Interpretation: This study provides a rigorous validation of multiple assays for relevant urinary biomarkers of CKD progression which combination may improve the prediction of CKD progression. Funding: This work was supported by Institut National de la Santé et de la Recherche Médicale, Université de Paris, Assistance Publique Hôpitaux de Paris, Agence Nationale de la Recherche, MSDAVENIR, Pharma Research and Early Development Roche Laboratories (Basel, Switzerland), and Institut Roche de Recherche et Médecine Translationnelle (Paris, France)

    De novo TRIM8 variants impair its protein localization to nuclear bodies and cause developmental delay, epilepsy, and focal segmental glomerulosclerosis

    No full text
    Focal segmental glomerulosclerosis (FSGS) is the main pathology underlying steroid-resistant nephrotic syndrome (SRNS) and a leading cause of chronic kidney disease. Monogenic forms of pediatric SRNS are predominantly caused by recessive mutations, while the contribution of de novo variants (DNVs) to this trait is poorly understood. Using exome sequencing (ES) in a proband with FSGS/SRNS, developmental delay, and epilepsy, we discovered a nonsense DNV in TRIM8, which encodes the E3 ubiquitin ligase tripartite motif containing 8. To establish whether TRIM8 variants represent a cause of FSGS, we aggregated exome/genome-sequencing data for 2,501 pediatric FSGS/SRNS-affected individuals and 48,556 control subjects, detecting eight heterozygous TRIM8 truncating variants in affected subjects but none in control subjects (p = 3.28 × 10-11). In all six cases with available parental DNA, we demonstrated de novo inheritance (p = 2.21 × 10-15). Reverse phenotyping revealed neurodevelopmental disease in all eight families. We next analyzed ES from 9,067 individuals with epilepsy, yielding three additional families with truncating TRIM8 variants. Clinical review revealed FSGS in all. All TRIM8 variants cause protein truncation clustering within the last exon between residues 390 and 487 of the 551 amino acid protein, indicating a correlation between this syndrome and loss of the TRIM8 C-terminal region. Wild-type TRIM8 overexpressed in immortalized human podocytes and neuronal cells localized to nuclear bodies, while constructs harboring patient-specific variants mislocalized diffusely to the nucleoplasm. Co-localization studies demonstrated that Gemini and Cajal bodies frequently abut a TRIM8 nuclear body. Truncating TRIM8 DNVs cause a neuro-renal syndrome via aberrant TRIM8 localization, implicating nuclear bodies in FSGS and developmental brain disease.</p
    corecore