341 research outputs found

    Topological bound states for quantum charges

    Get PDF
    We discuss how, in appropriately designed configurations, solenoids carrying a semifluxon can be used as topological energy barriers for charged quantum systems. We interpret this phenomenon as a consequence of the fact that such solenoids induce nodal lines in the wave function describing the charge, which on itself is a consequence of the Aharonov-Bohm effect. Moreover, we present a thought experiment with a cavity where two solenoids are sufficient to create bound states.Comment: Close to published versio

    Simulating Metal Mixing of Both Common and Rare Enrichment Sources in a Low-mass Dwarf Galaxy

    Get PDF
    One-zone models constructed to match observed stellar abundance patterns have been used extensively to constrain the sites of nucleosynthesis with sophisticated libraries of stellar evolution and stellar yields. The metal mixing included in these models is usually highly simplified, although it is likely to be a significant driver of abundance evolution. In this work we use high-resolution hydrodynamics simulations to investigate how metals from individual enrichment events with varying source energies E_(ej) mix throughout the multiphase interstellar medium (ISM) of a low-mass (M_(gas) = 2 × 10⁶ M_⊙), low-metallicity, isolated dwarf galaxy. These events correspond to the characteristic energies of both common and exotic astrophysical sites of nucleosynthesis, including asymptotic giant branch winds (E_(ej) ~ 10⁎⁶ erg), neutron star–neutron star mergers (E_(ej) ~ 10⁎âč erg), supernovae (E_(ej) ~ 10⁔Âč erg), and hypernovae (E_(ej) ~ 10⁔ÂČ erg). We find the mixing timescales for individual enrichment sources in our dwarf galaxy to be long (100 Myr–1 Gyr), with a clear trend of increasing homogeneity for the more energetic events. Given these timescales, we conclude that the spatial distribution and frequency of events are important drivers of abundance homogeneity on large scales; rare, low-E_(ej) events should be characterized by particularly broad abundance distributions. The source energy E_(ej) also correlates with the fraction of metals ejected in galactic winds, ranging anywhere from 60% at the lowest energy to 95% for hypernovae. We conclude by examining how the radial position, local ISM density, and global star formation rate influence these results

    Location Games and Bounds for Median Problems

    Get PDF
    We consider a two-person zero-sum game in which the maximizer selects a point in a given bounded planar region, the minimizer selects K points in that region,.and the payoff is the distance from the maximizer's location to the minimizer's location closest to it. In a variant of this game, the maximizer has the privilege of restricting the game to any subset of the given region. We evaluate/approximate the values (and the saddle point strategies) of these games for K = 1 as well as for K + , thus obtaining tight upper bounds (and worst possible demand distributions) for K-median problems

    Extremum Properties of Hexagonal Partitioning and the Uniform Distribution in Euclidean Location

    Get PDF

    The Inability of Ambipolar Diffusion to set a Characteristic Mass Scale in Molecular Clouds

    Full text link
    We investigate the question of whether ambipolar diffusion (ion-neutral drift) determines the smallest length and mass scale on which structure forms in a turbulent molecular cloud. We simulate magnetized turbulence in a mostly neutral, uniformly driven, turbulent medium, using a three-dimensional, two-fluid, magnetohydrodynamics (MHD) code modified from Zeus-MP. We find that substantial structure persists below the ambipolar diffusion scale because of the propagation of compressive slow MHD waves at smaller scales. Contrary to simple scaling arguments, ambipolar diffusion thus does not suppress structure below its characteristic dissipation scale as would be expected for a classical diffusive process. We have found this to be true for the magnetic energy, velocity, and density. Correspondingly, ambipolar diffusion leaves the clump mass spectrum unchanged. Ambipolar diffusion appears unable to set a characteristic scale for gravitational collapse and star formation in turbulent molecular clouds.Comment: 16 pages, 5 figures. ApJ accepte

    Metal Mixing and Ejection in Dwarf Galaxies is Dependent on Nucleosynthetic Source

    Get PDF
    Using a high resolution simulation of an isolated dwarf galaxy, accounting for multi-channel stellar feedback and chemical evolution on a star-by-star basis, we investigate how each of 15 metal species are distributed within our multi-phase interstellar medium (ISM) and ejected from our galaxy by galactic winds. For the first time, we demonstrate that the mass fraction probability distribution functions (PDFs) of individual metal species in the ISM are well described by a piecewise log-normal and power-law distribution. The PDF properties vary within each ISM phase. Hot gas is dominated by recent enrichment, with a significant power-law tail to high metal fractions, while cold gas is predominately log-normal. In addition, elements dominated by asymptotic giant branch (AGB) wind enrichment (e.g. N and Ba) mix less efficiently than elements dominated by supernova enrichment (e.g. α\alpha elements and Fe). This result is driven by the differences in source energetics and source locations, particularly the higher chance compared to massive stars for AGB stars to eject material into cold gas. Nearly all of the produced metals are ejected from the galaxy (only 4% are retained), but over 20% of metals dominated by AGB enrichment are retained. In dwarf galaxies, therefore, elements synthesized predominately through AGB winds should be both overabundant and have a larger spread compared to elements synthesized in either core collapse or Type Ia supernovae. We discuss the observational implications of these results, their potential use in developing improved models of galactic chemical evolution, and their generalization to more massive galaxies.Comment: 18 pages, 7 figures (plus 2 page, 2 figure appendix). Accepted to Ap

    Magnetic Forces in the Absence of a Classical Magnetic Field

    Get PDF
    It is shown that, in some cases, the effect of discrete distributions of flux lines in quantum mechanics can be associated with the effect of continuous distributions of magnetic fields with special symmetries. In particular, flux lines with an arbitrary value of magnetic flux can be used to create energetic barriers, which can be used to confine quantum systems in specially designed configurations. This generalizes a previous work where such energy barriers arose from flux lines with half-integer fluxons. Furthermore, it is shown how the Landau levels can be obtained from a two-dimensional grid of flux lines. These results suggest that the classical magnetic force can be seen as emerging entirely from the Aharonov-Bohm effect. Finally, the basic elements of a semiclassical theory that models the emergence of classical magnetic forces from fields with special symmetries are introduced
    • 

    corecore