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ABSTRACT

We consider a zero-sum game with a maximizer who selects a point

x in given polygon R in the plane and a minimizer who selects K points

Cl, c2, ..., cK in the plane; the payoff is min lix - cill, or any mono-

l<i<K
tonically nondecreasing function of this quantity. We derive lower and upper

bounds on the value of the game by considering, respectively, the maximizer's

strategy of selecting a uniformly distributed random point in R and the mini-

mizer's strategy of selecting K members of a (uniformly) randomly positioned

grid of centers that induces a covering of R by K congruent regular hexa-

gons. Our analysis shows that these strategies are asymptotically optimal

(for K + o).

For Euclidean location problems with uniformly distributed customers,

our results imply that hexagonal partitioning of the region is asymptot-

ically optimal, and that the uniform distribution is asymptotically the worst

possible.

KEY WORDS: Facility Location, K-Median Problem, Location Games,
Planar Partitioning
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1. Introduction

Let Xl,X2,...,XN be a given set of points in the plane R and consider

the problem of finding K other points C'centers", "medians") Cl, 2,...cK so

as to minimize

N
N min IIXi-c l (1.1)

i=l l<j <K 

where flxi-cj j is the Euclidean distance between xi and c.. This problem,

which is known as the Multi-Source Weber Problem ([KS]) or as the Euclidean

K-median problem ([HM]), generalizes naturally to the problem of finding

a set C = {cl,C2,...,cK} so as to minimize

D(w,C) [ min ljx-cHI dwtx). (1.2)
cC

In this expression, w is a finite positive Borel measure with bounded support

2
on R . We will refer to w as the demand. Let S(w) denote the support of w

and let fw 2 ltN
and let wj i w(R ) be the total demand. (The choice w = i 6 , where

i=l Xi

for any xi and T, 6 (T) is defined to be 1 if xiT and 0 otherwise, will
1 x. 1

return us to (1.1).)

The generalized problem is of interest, in part, because continuous dis-

tributions often provide computationally useful approximations of large

ensembles of points (see [Ha3] for further details). When normalized

so that w(R2) = dw = 1, w may be viewed as a probability measure on R

and D(w,C) as the associated expected distance between a random point and

the point of C closest to it. Of particular interest is the case in which

Note that the variant of the K-median problem considered here does not
require cj 's to be chosen from among the x.'s.



w is uniform on a region R of the plane, i.e., w = m R where m is a positive

constant and R is the restriction of , Lebesgue measure, to R.

Now let DK(w) denote the minimal value of D(w,C) when C is restricted to

contain no more than K points. Theorem 1 of [Ha2] implies that there is a

positive constant y2 satisfying

lim K /2DK(w) = 2 2/3 d) 3/2 (1.3)
K+o

for all w having m as the density of its absolutely continuous part. Moreover,

the author shows that for any measurable set T, as K o the number of

points in Cn is proportional toT m2/3dp. This result is rather general

and is not tied to many of the particular characteristics of the 2-dimen-

sional Euclidean K-median problem. Using these characteristics, in this paper we

are able to consider finer details of the (asymptotic) solution structure.

We show in Section 2 that if w is uniform on some bounded region R,

then, as K --+ , the minimizing cl,c 2,..., cK tend to be configured like the

centers of the hexagonal cells in a honeycomb covering R. As a conse-

quence, we find that

2 /2/(3v/-) (1/3 + 1/4 n3) z 0.377 (1.4)

which is the average distance between the center and a (uniformly dis-

tributed) random point in a regular hexagon with unit area.

Consider now another, seemingly remote, problem. What is the largest

possible value of DK(w), given that the support S(w) of w is contained

in R and that I[w = w(R) = 1; moreover, what demand w yields this maximum

value? Such maximin problems, which are the subject of [HaMJ, seems quite

difficult for K > 2. By randomizing the positioning of an hexagonal center

grid, in Section 3 we show, however, that there is a positioning of
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such a grid for which the cost D(w,C) (and therefore DK(w)) is smaller than

the DK obtained for a demand w that is uniform on a hexagonal cover of R

and that is only slightly larger than R (when the perimeter is finite

the area of the difference is O(K 1 / 2). This result helps to establish

that

li K1 /2 sup{DK(w): w = 1, S(w)cR} = y2 (R) (1.5)2
K-io w

(where y2 is given by (1.4), as well as the fact that as K grows, the uniform

distribution becomes the worst possible (i.e., cost maximizing) demand.

The results contained in Section 2 originated in [HA1]. They are

similar to those established independently (and simultaneously) by

Papadimitriou [Pa] and, as it turns out, quite earlier by Fejes-Toth

[F1], [F2]. Our results in this section differ from Papadimitriou's

in two respects. First, he relies on a computer-aided proof to estab-

lish an essential convexity property (see Lemma 2 of this paper) under-

lying the analysis. On the other hand, our development is completely

analytic. Furthermore, our proof provides more geometric insight and

actually establishes a far more general result: any monotone function

f of Euclidean distances can be used in the objective function (1.2)

in place of the Euclidean distances themselves. Although not explicitly

2 Note that (1.5) is stronger than Sup {lim K DK(w): w = 1, s(w)CR} =

y2l(R)
/2 which (using Jensen's inequality) is an immediate consequence

of (1.3) (see Section 3).

We are grateful to J.M. Steele for bringing this early work to our

attention.
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stated as such, Fejes-Toth's proof, which differs from our own, also

implies this generalization.

Finally, it is pleasing to note that the maximum result (1.5)

to be considered in Section 3 also generalizes in this same fashion.

2. Hexagonal Partitioning and Lower Bounds for Uniform Demand

A Preview:

As motivation for the honeycomb form of the asymptotic solution,

let us consider the following version of the problem. Suppose that for

any particular K, we were free to move the demand points and choose any

shape and size for the single facility subregions, provided only that the

total area were equal to A. Then as one could easily verify, each

subregion would be circular with area A/K. Unfortunately, such a parti-

tion of R is not possible in general (it is never possible for more than

one value of K). Intuitively, a close approximation to the K-circle

partition seems to consist of K disjoint congruent circles of maximal

size packed inside the region R and with the remainder of R divided

between the circles so that each point is assigned to the center closest

to it. Asymptotically this solution is equivalent to partitioning to K

congruent regular hexagons.

Suppose, instead, that we consider partitioning R into congruent

regular polygons. Figure 1 illustrates partitions into equilateral

triangles, into squares, and into hexagons. Partitioning into congruent

regular polygons with more than 6 edges is impossible (see Lemma 4 to

follow).

4
Regular hexagonal partitioning structures are common in nature (see

On Growth and Form by D'Arcy Thompson [Th]). They arise for a variety
of reasons, sometimes as a solution to extremum problems. For example,
they minimize (asymptotically) the total length of the walls of a parti-
tion of a planar region into K equal area subregions, thus providing an
economic (wax saving) rationale to the hexagonal structure of honeycombs.
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FIGURE 1: The regular partitioning schemes

Consequently, from among all regular partitions, the natural choice for

approximating the nonachievable ideal circular single facility service

regions would appear to be the hexagonal partitioning scheme.

Of course, it is not clear that a non-regular polygonal partitioning

having some cells with more than 6 edges and some with fewer than 6 edges

might not be preferable. As frequently is the case on such occasions,

showing that the cost in an "average" cell (that is, one with an average

number of edges and an average area) is lower than the average cost per

cell, involves application of a convexity argument. Indeed, our formal

proof relies on such an argument.

Problem Setting:

As we will see, the hexagonal partitioning property applies to

problems with cost structure broader than that of the K-median problem,

namely whenever the cost is monotonically increasing (not necessarily

I

II I

\/

/7
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linearly, as in the K-median problem) in the Euclidean customer to

facility distance.

Let f: [O,~) -+ [0,0] be monotonically increasing and consider the

following generalizations of D(w,C) and DK(w):

Df(w,C) = f(minllx - cll)dw
CC

and

DK(w) = min {Df (w,C): IC] < K}K~~~~~~~ 

Df and Df coincide with D and DK whenever f is the identity, i.e.,f(r) = r.

We shall require some additional notational conventions:

- Let T(a,A) denote the right angle triangle with area A, with a

vertex of acute angle a at the origin, and with one edge on the

horizontal axis.

- Let f() ,A)= Df( T(a,A){0}) 1 f f(Ijx )dp.
T(a,A)

- For y > 2 and A > 0, let f(Y,A) = 2y · y m2y)

Note that for y = 3,4,5...,Of(y,A) = f(llxll)dp
P (A)

is the cost of serving a regular y-gon Py(A) of area A by a facility

located at its center.

- Let (y) = I(y,1), where I is the identity (i.e., I(r) = r).

That is, (y) = 2y I 1 IJlxld d

Calculation yields:

(y) = (y tan3 1) (sec - tan + n (sec + tan n))
3 y y y y y
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Note that for y = 3,4,5,...,4(y) is the average distance to the center in

a regular unit area y-gon.

Results:

We are ready to state the main result of this section:

THEOREM 1: Let f: [0,0o] [0,0o] be monotonically increasing and let R be an

n-gon of area A. Then for all K > 1,

f n-6 A
DK(PR) > Kf(6 + K ' K)

In particular (when f is the identity),

n-6 ( )

DK(PR) > (6 + K ) A K

Remarks:

- If n 6 (e.g., R is rectangular), we may substitute f(6 ,) and

n - 6 A n - 6
(6) for f(6 + nK 6, AK) and (6 + K ) in the theorem.

- If K = 1, the right-hand side of these expressions become f(n,A) and

¢(n) A3/2 Thus,for the location of a single center, the regular

n-gon gives the smallest cost from among all n-gons.

- If R is disconnected and has . components and h "holes",but still

has a piecewise linear boundary,the theorem remains valid with

6 + n - 6(K - h) in place of 6 + K 6

The asymptotic optimality of hexagonal partitions is an obvious

corollary' of Theorem 1. Observing that f is continuous in both

arguments, that 6 + nK 6 6 as K , and that R can be covered byK
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K congruent regular hexagons of an area that converges to A as K a,

we have

COROLLARY 1.1 If R is a polygon, and f is monotone, then,

lim DK(PR 1.

Kx Kpf(6, K)

DK(PR)
In particular, lim = 1 and thus, recalling Theorem 1

K-w K - (6)p(R)3 /2

of [Ha2] (see also (1.3), we conclude that y7 = 0(6), i.e.,

COROLLARY 1.2 For any demand distribution w in the plane,

lim K DK(w) = (6)(f m2/ 3 dp)3 / 2

K+ 

where (6) = A--(3 + 4 n 3) is the average distance of points from the center

of a regular unit area hexagon.

The rest of this section is devoted to the proof of Theorem 1. The

proof is based on the convexity of cff, the (decreasing) monotonicity of

Of in its first argument, y, and the fact that the average number of edges

n - 6
in a single facility service cell is no more than 6 + K. We establish

each of these facts as intermediate results. The proof can be viewed as

constructive in the sense that it is based on a sequence of mappings of R

(and C) that reshape R while (i) preserving its area,and (ii) not increasing

the distance of any point in R to the closest center in C.
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Proof of Theorem 1

Though the assertion holds as stated, we restrict ourselves to

situations in which R is convex. (The extension to the nonconvex case

is tedious and not very illuminating.) We may assume that C R, since

the projection on R of any point c C-R lies closer than c to any point

in R, and thus reduces Df (PRC).

Let R = {x R: lx - cjl Ix - ci for all i = 1, 2, ... , K}.

R1, R2, ..., R constitutes a partition 5of R into K polygons. Draw

lines from each center c to the vertices of its associated polygon Rj

and draw perpendicular from each c onto the edges of R (provided they

lie inside R). The result is a "center" partition of R into Triangles

T1, T2, ..., T . Each triangle Ti has one of the centers as a vertex and

has another vertex incident to a right or obtuse angle (see Figure 2).

5Strictly speaking, these sets do not give a proper partition, since the com-
mon boundaries (that have a null area) of the polygons are counted more
than once.
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number of centers K = 3

number of triangles m = 29

FIGURE 2: Partition of R into triangles

For i = 1, 2, ..., m, let Ai denote the area of triangle Ti, and let

ai denote the acute angle of Ti that is adjacent to a center.

Consider the following intermediate results:

LEMMA 1: Df(T'C) af(iAi) for all i = 1, ..., m.

Proof: If Ti is a right angle triangle, then by definition and by the invariance

of Euclidean distances and of areas under displacement Df(PT ,C) =
1

of(UiAi). If, on the other hand, Ti has an obtuse angle then, as

depicted in Figure 3, we compare it to a right angle triangle with the

same angle at the "center" vertex.
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"center" C

FIGURE 3: Comparison between obtuse and right angle triangles

Since any point in the lower shaded area in Figure 3 except d is

closer to the "center" vertex than any point in the upper shaded area,

we concluded that Df(pT ,C) > f(ti,Ai) 

LEMMA 2: af(P,B) is convex on the region (0,2) x [0,o).

Proof: Since af is continuous, it suffices to show that f(1,Bl) +

Of(B2,B2) 2f(IP + 2 B1 + B2 ) 
Yf(P2,B 2 ) > 2 whenever 0 < 1,P2 < and B1,B2 O.

We compare a pair of right angle triangles with areas B1,B2 and angles

P1,12 at a "center" vertex, with a pair of congruent right angle tri-

angles each with area (B1 + B2) and an angle (1 + 2) at the "center"

vertex (see Figure 4).

The comparison, depicted in Figure 4, is carried out in two stages.

We first compare the original pair of right angle triangles (leftmost in

Figure 4) to an intermediate pair of right angle triangles (middle of
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Figure 4) of the same total area and total angle at the "center" vertex,

and with a common hypotenuse. Then,we compare the intermediate pair to

the pair of congruent right angle triangles (rightmost in Figure 4) with

the same total area and total angle at the "center" vertex.

"center" "center" "center"

: /7 p2.

P
t

1

P2
2

1

Q' Q

FIGURE 4: Comparison between pairs of right angle triangles

It is enough to show that, when we move from left to right in Figure 4,

the area that is at distance r or more from the center is decreasing.

That this assertion is true for the first comparison follows simply from the

fact that every point in the trapezoid Q2P2P2S other than S is closer to

the center than any point in the (equivalent in area) triangle Q1Q2S.

(This argument is similar to that employed in the proof of Lemma I.)

The situation in the second comparison is not so straightforward.

It is not the case that every point in the trapezoid S'PPQ" lies closer

to the center than any point in the trapezoid S'P"P"Q'. We can, however,

carry out a point by point comparison or precisely speaking, demonstrate

P 1

-

,r~~



13

an area (i.e., Lebesgue measure) preserving and distance (to center)

decreasing mapping of S'P"PQ' into S'P'P"Q". One such mapping can be

constructed as follows (see Figure 5): Slice trapezoid S'PP;Q' into

very thin (almost rectangular) strips, using lines parallel to the basis

S'P'. Then,select the first strip (that is adjacent to S'P1) and

"stretch" it so that its length expands to the length of S'P", while its

width shrinks so as to preserve the area. Place the stretched strip in

the trapezoid S'PP2Q", so that the point that was adjacent to P is now

adjacent to P. To complete the mapping, we proceed in the same manner,

selecting the next strip, "stretching" it and placing it along the

previously transformed strip and so on until the whole trapezoid is

transformed. More precisely, if X is a point in S'P" PQ', then there is

O < (X) 1 so that X = XX + (1 - )X where X lies on P1Pl, X lies on

S'Q' and the segment XX (passing through X) is parallel to P1S. Let

A(X) be the area of the sub-trapezoid S'P'XX. Next construct a sub-

trapezoid S'PYY, of S'P'P"Q" (see Figure 5) that has the same area A(X)

and let Y = XY + (1 - X)Y. Consider the 1-1 mapping of S'P1Q{Q' into

S'P'P"Q" defined by the correspondence X -+ Y. The mapping is obviously

area (measure) preserving, and it is a straightforward exercise (see

Lemma 5 in the Appendix) to verify that it is distance decreasing.

We conclude, then, that for all monotonically increasing f,

2 + 2 B1 + B2)
2a f( 2 ) > af(Pl,B 1) + f(P2 'B2) or, that of is convex in

(°' )x []a0). o
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"center"

P1'
y

2

P11

FIGURE 5: Area preserving, distance decreasing mapping

LEMMA 3: For fixed A and f, f(y,A) is monotonically decreasing in y

over the interval (2,co).

Proof: By Lemma 2, we know that f is convex, and thus, for any posi-

tive scalar X,af(a,Ak) is convex in a. Furthermore, f(O,XO) = of(0,0)

Cf(a,xA)
= 0. Consequently (by the 3-chord lemma, for example), a is

a i

monotonically increasing in a for 0 < a < -.2'
r A n

2n f y' 2r Y
2/Yn/y completes the proof.

Recalling that f(y,A) =

0

LEMMA 4: The number of triangles m in the "center" partition of R does

not exceed 2K(6 + n K 6)K

I
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K
Proof: By our construction,m 2 n. where n is the number of edges

j=1
of the polygon R..

Consider the vertices of the polygons Ri, R2, ..., RK; there are

three types of vertices:

(1) those that are vertices of R,

(2) those that lie on the relative interior of edges of R, and

(3) those that lie in the interior of R,

There are (by definition) n type 1 vertices. ·Let Ni for i = 2 and 3

denote the number of type i vertices.

nl=
type 1 vertex

ype 2 vertex

ertex

FIGURE 6: Partition of R into polygonal service regions

Each type 2 vertex is a vertex of at least two polygons and each

type 3 vertex is adjacent to at least 3 polygons. Furthermore, it is

easy to see that each such vertex must be a vertex of all the polygons

adjacent to it. (That is, no two edges adjacent to a type 3 vertex are

colinear.)
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Consequently, as depicted in Figure 6, the number of subregional

edges adjacent to each type 1 [respectively type 2 and 3] vertex is at

least 2 [respectively 4 and 6]. (Note that any edge of two adjacent

subregions is counted twice.) Since the total number of edges in R is

nj, summing over all the vertices gives the subregional edge count

K
n. > (2n + 4N2 + 6N3). (2.1)

j=1 3

The division by 2 of the right hand side reflects the fact that each

edge is counted twice in the vertex adjacent count, once for each of its

two vertices.

Summing the angles over the vertices and over the polygons yields

the equation

K
n(n. - 2) = (n - 2) + N2 + 2N 3 (2.2) 6

j=l
R .*

K
which implies that N3 = I( ~ n. - N2 - n - 2(K - 1)). Substituting this

j=1 J
expression in (2.1) and rearranging gives

6 This equation could be obtained from Euler's Lemma for planar con-
nected graphs.
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K +n-6
n <- 6(K - 1) + n - N < 6(K - 1) + n = K(6 + n K 

j=1 

and, thus,m 2 n. < 2K(6 + K 6) 
j=1 J

We are now ready to complete the proof of Theorem 1. Using the fact
m m

that Y a. 2K and I A. = A, and Lemmas 1-4, we have
i=1 i=1

m m
Z a. A.

m m 1 1
Df = I fA i=l
D PRC)=(T ,C) > o ) 2 f( iA i) - m ' m

i=l i i=l

(27CK A > (6 + n- 6 A= mf ) = K ( , ) = Kf (6 + )
fm m f2K' K f K K

The three inequalities in this expression follow, respectively, from

Lemma 1, Lemma 2, and Lemma 3 together with Lemma 4. Since this

result is valid for any C, the theorem is valid. 0

To conclude this section, we note that the proof of Theorem 1

actually establishes (by a sequence of measure preserving, distance

decreasing transformations) a stochastic dominance property of hexag-

onal partitioning. Let FH denote the cumulative distribution of

distances from a (uniformly) random point in a hexagon with area

p(R)/K to its center. This distance distribution is achievable for

7This equality is obvious when all centers are in the interior of R.
However, if c lies on an edge or a vertex of R, one can add degenerate

null area triangles to justify Z ai = 2 at that center.1

___·_�_�__I__II__I �I_�_� il____ __ �_� ___��__I_� __��__�__�____I__�1_1111__9__1111___11___LII_·IICIIII(-�I 1�11_-_--.�
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the distances of points to their nearest center if the region R can

be partitioned into K congruent regular hexagons. (This "ideal" parti-

tion is in general achievable approximately, with negligible boundary

effects, only for large values of K.) Next, suppose, for simplicity,

that the region R is a square and that C is any specified center set

of K points. Then as shown in Figure 7, FH stochastically dominates

the cumulative distribution of distances of points in R to their nearest

center in C. This dominance relationship is, incidentally, the form

of Theorem 1 as stated by Fejes-Toth [F2].

FH(S)

Prob( min Ix-cllss)
ceC

n

C

S

FIGURE 7: Stochastic Dominance of Hexagonal Partitions

The proof of Theorem 1 implicitly uses this dominance property to

show that hexagonal partitioning minimizes min f(lIx-cj II)dl(x)
l<j<K

for any monotone function f. In addition, the dominance property also

implies that hexagonal partitioning is asymptotically cost minimizing

when other cost functionals are used in place of the integral. For

example, hexagonal partitioning asymptotically minimizes

max min Ix-c. Ij, as shown by Zemel [Zl.
xeR l<j<K
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3. Uniform Demand and Upper Bounds for Hexagonal Partitioning

In this section we derive an upper bound on DK(w) (and DK(w)) for

demand distributions w whose support is contained in a bounded region R

with a rectifiable boundary. The bound depends only on the area A and

the perimeter p of R. In contrast to Theorem 1, though, the bound is

not restricted to uniform demand.

This upper bound and the lower bound of Theorem 1 imply that the

uniform distribution on a region R is in some "strong" asymptotic sense

(that will be explained) the worst possible (i.e., cost maximizing)

distribution in that region.

THEOREM 2: Let R be a connected region in the plane with finite area A

and with perimeter p. Then for any demand w with support in R and for

any measurable real-valued function f defined on [O,co),

f AA-1
DK(W) <- Iwl f(6, P)().

In particular, if f is the identity, then

DK(w) < A(6)'wj( K)

In these expressions,

1 2bK-1 /2 1 b

1 - aK 1 - aK 1 - aK 1 - aK

where a - 8 and b 2 '
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Since f is continuous in its second argument and since A - A as

K c+ (A = A + o(K- )),we immediately have (in conjunction with Theorem 1)

COROLLARY 2.1: Assume the conditions of Theorem 2. Then,

DK(w)
lirn (Sup { A A -1 : S(w) c R, w • 0}) = 1.
Keno w lwlf(6' K)(A)

Proof: That the limit is at most 1 follows immediately from Theorem 2.

Selecting w as uniform over R and invoking Theorem 1, we conclude that

the limit is at least 1. [

Remark: Corollary 2.1 as well as the subsequent Corollary 2.2 hold for

any Lebesgue measurable bounded R with p(R) = A,but we will not pursue

this matter in this paper.

Recalling Theorem 1 (or Corollary 1.1), we have

COROLLARY 2.2: Assume the conditions of Theorem 2 and let m = Iwl/A

(i.e., mp(R) = Iwi). Then,

DK(w)
lim (Sup { f : S(w) c R, w 0O) = 1.
K+> w DK(mPR)

That is, among all demand distributions in a given region with some

fixed total demand, the uniform distribution is asymptotically worst

(i.e., cost maximizing).

It is interesting to compare this last property with a slightly

weaker asymptotic maximality result. Consider the equality

lim K K(W) = (6)(I m2/3 dp)3/2
K-o K

of Corollary 1.2. Applying Jensen's inequality to the convex function

g(x) = x3/ 2 gives
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1 dp)3/2 1 ( 2 /3 )3/2 d1 (m2/33/2
(R) C,(R)

that is

(I m 2 / 3 dp)3/2 ( mdp)p(R) < Iwl(R)%

with equalities if and only if m is constant almost everywhere in R, and

equal to m = p() In other words,

DK(w)
Sup lim : S(w) c R, w O = 1. (*)
w K-* DK(mPR)

This result is substantially weaker than Corollary 2.2, in the sense

that here we maximize with a single demand for the whole tail of the

sequence, where in Corollary 2.2 we are free to maximize with different

demands for the individual K's. (Recall that in general Sup(lim(-)) 

lim(Sup(-)).) It is interesting to note that if we consider a variation

of the K-median problem that restricts the centers to lie within

the support of the demand (i.e., C c S(w)), then (*) will be still valid

([Ha2], Section 4), while Corollary 2.2 will not([HaM], Section 7).

The proof of Theorem 2, which concludes this section, is based on a

randomized hexagonal covering argument. This randomized covering can be

interpreted as a randomized strategy in a zero-sum game with payoff

min f( Ix - c). The maximizer in this game chooses x c R and the minimizer
cC 2
chooses K points C from R . With this interpretation, w is a randomized strategy

for the maximizer (note that in our original problem there is no loss of

generality in assuming that wl = 1), while the randomized hexagonal

covering is a randomized strategy for the minimizer. Our conclusion is
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that asymptotically (as K -+ oo) the uniform distribution for x together

with a uniformly randomized positioning of a regular hexagonal cover

constitute a saddle point of this game. A companion paper [HaM] treats

this result and other so-called "location games" more thoroughly.

Proof of Theorem 2:

Partition the plane into congruent regular hexagons (reference hexa-

gons) each with area A/K. Take the grid of the centers of the hexagons

and, without changing its orientation, position it (as a whole) randomly

so that each single center is distributed uniformly in a regular hexagon

of area A/K.

By Lemma 6 of the Appendix, R is covered, for any positioning of

this grid, by no more than K of the hexagons; that is, we may assume

that for any positioning of the grid, every demand point in R is served

by the grid point closest to it.

Consider now an arbitrary point x R and any particular random

grid G of centers generated as indicated above. Draw a regular hexagon

of area A/K around x (Figure 8). This hexagon always contains exactly

one grid point from G, which is the center serving the demand point x from

this grid of centers. By our choice of randomization, this center has a

uniform distribution in this hexagon. Thus, if there is discrete

demand mass Aw(x) at point x, the average (expected) cost paid by the

demand there is

Aw(x) A(6 A)

(Recall that -f(6, K) p(H) I f(llxll)dp,where H is a regular hex-

agon of area A/K, is the average cost per unit demand at our point.)
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Summation (or integration in the non-discrete case) over all

randomized grid solutions yields an average total cost wl|f(6, A)( -1

Since each of these randomized grid solutions is feasible (i.e., use K

or fewer centers), the value of the minimum cost solution must be no

more than lwIlf(6, A)() as well. f K K~~~~~~~~~~~~~~~~~~[

and
nt

FIGURE 8: A single customer amid a randomized center grid.
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4. Summary

We have derived a lower bounds on the optimal cost of K-median problems (or

similar monotone-in-distance K-median problems)with demand uniformly dis-

tributed in a given bounded region R. On the other hand, using a randomly

positioned hexagonal grid we have established an upper bound for the

optimal cost that is valid for all possible demand distributions in R.

These two bounds converge (in ratio) as K tends to infinity to the cost

for demand uniformly distributed over K regular hexagons of area (R)/K

each with their centers chosen for c1,c2,...,c K. Therefore, as K + ,

if the demand is distributed uniformly, a hexagonal partitioning scheme

is asymptotically optimal.

As mentioned in [HaM], we have essentially found a saddlepoint of a

zero-sum game in which the maximizer chooses a point in R, the minimizer

chooses K points in R and the payoff is the distance between the maxi-

mizer's choice to the closest of the minimizer's choices (or some nonde-

creasing function of this distance).
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APPENDIX

LEMMA 5: In Figure 5,OY is shorter than OX. (The construction of

Figure 5 is described in Lemma 3 in Section 2.)

Proof: (Let MN denote the length of segment MN and let MNL denote the

angle MNL.) Since the trapezoids S'P'1XX and S'P'YY are equal in area,

while the bases of the first one are shorter than those of the second

one, their altitudes are inversely ordered, i.e., P X >

F . Noting now that 4 P1S'X 4 P'S'Y we get S' > S'Y. This result together

with the fact 4 OS'X OS'Y imply OX - OY.

Also,l1 OX • 2 < 4~ OYY f 2- Consequently,
- 2 =

OY = OYCos24 2 + 2Sini 2
= 2 - (1 - 2)Sin 2

2 < OX1 - (1 - 2)Sin 2 L1

= OX . o

LEMMA 6: Let R be a connected region in the plane with finite area A

and perimeter p, then any partition of the plane into congruent regular

hexagons, each with area A/K, where

1 2bK 1 /2 1 b
A = A( 1 1 + _ + ( -1)

1 - aK 1 - 1 - aK1 - aK

8n
and

(A.1)

b = 2 p23 ; A

will use no more than K hexagons to cover R.

"
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(Remark: If R is not connected, but has components and h "holes,"

then the result still holds with a = 83(a - h).)

Proof: Consider any partition of the plane into congruent regular

hexagons of diameter d (i.e., edges each have length d/2). Then, the set R(d) 3

{x + y: x R, Ilyl d} contains any hexagon that covers some point in

A. Hence,if

p(R(d)) K 3 d2 (A.2)

(38 d2 being the area of a single hexagon), then there are no more than

K such hexagons.

By Lemma 7 to follow, we know that

p(R(d)) A + pd + d2 (A.3)

(with (£ - h)nd2 instead of d2 if R is not connected and has compo-

nents and h holes).

So, to guarantee no more than K hexagons in a cover it is sufficient to

have

A + pd + d2 K 2- d2 (A.4)

So, let d be the smallest solution of (A.4), that is the positive

solution of (K - )d2 - pd - A =0, and let A =K 38 2 =
8 8

A + pd + d2. A simple calculation yields the expression (A.1) for A. o

LEMMA7: Let R be a connected region in the plane, with a finite peri-

meter p, then for d 0
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p(R(d)) p(R) + pd + d2 (R(d) {x + y : x R, Ilyll d},

(Remarks: This inequality becomes an equality if R is convex. If R is not

connected and has components and h "holes", the inequality holds with

(Z - h)rrd 2 instead of Td2.)

Proof: We consider only a polygonal set R as depicted in Figure Al (the

validity for other sets follows from simple continuity arguments).

Construct external rectangles of width d on the sides of R. In

the case of a vertex with corner angle a < , we must add a circular

sector of area ( - a)d2 to complete the turn of the strip around the

corner, while if a > , we have an overlapping of two

rectangles on a rhombus of area tan(a - )d 2 > (a - )d2. We may con-

clude then that the area of the strip is at most pd + Y(n - a i)d2 (the
i

summation is over all vertices, outer and inner).

Observe now that in general ( - a) = 27(£ - h), where is the
i

number of connected components of R and h is the number of holes in

R. And since = 1, we have 2(i - ai) < 2, and the area. of the strip

2m p 1Td i
is at most p.d + Ed O

FIGURE Al: A d-wide boundary strip


