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ABSTRACT

We consider a two-person zero-sum game in which the maximizer

selects a point in a given bounded planar region, the minimizer selects

K points in that region,.and the payoff is the distance from the

maximizer's location to the minimizer's location closest to it. In a

variant of this game, the maximizer has the privilege of restricting

the game to any subset of the given region. We evaluate/approximate

the values (and the saddle point strategies) of these games for K = 1

as well as for K + , thus obtaining tight upper bounds (and worst

possible demand distributions) for K-median problems.
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1. Introduction

In the preliminary design of geographically distributed service

systems, it is quite useful to have simple bounds on the optimal

cost that depend only on crude problem data, like the total number of

customers, the area of the region in which they are distributed and the

number of facilities allowed. The purpose of this paper is to derive

such bounds for the K-median problem.

Let X = {x1, x2, ..., xN} be a given set of customer locations in the

plane , and let C = {c1, c2, ..., CK} be a set of facility locations

to be determined. The value of the free K-median problem is

DK(X) min I min Ijx-cll
CcR 2 xX cC

The value of the restricted K-median problem is

DK(X) - min I min lix-cll
CcX xX cC

ICI<K

where ICI denotes the cardinality of the set C and where lx-cll is the

distance from x to c.

Let R be a given compact planar subset; how large can DK(X) and DK(X)

become, if XCR? A sharp answer to this question requires the evaluation

of

VK(R) - max DK(X) ; VK(R) max DK(X).
XcR XcR

IXI=N IXI=N

If instead of a finite number of (equally weighted) customers, we

have a demand distribution, w, that is a positive regular Borel measure

^�1IIII�IYI -I·Il--·-�-·L^III�---�I- -- ��^_I II--�-_II -^·IUIII111�·-·�·---··IIIY··�--YI··CILI I.I�I�-.·)-III*UY·ULi�lO-I·LP�C·IYI·IIU- �--·��--pmlilllll^�ln
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with a bounded support S(w), we may, appropriately, by abuse of notation,

set

DK(w) - min f min 1Ix-clldw(x)
CcR2 cC

ICl<K

DK(w) = min f min IIx-clldw(x)
CcS(w) cC
I C I <K

as the values of the free and restricted versions of the K-median

problem. Analogously to VN and VKwe define

VK(R) = max DK(W) ; VK(R) - max K(W). (1)
w(R)=w(R2)=1 w(R) =w(R2 )=1

Clearly,

1 N -I=N
VK(R) -> N V(R) VK(R) > VK(R)

and

VK(R) = lim -VK(R) VK(R) = lim NVK(R)

In Section 2, we introduce zero-sum games associated with the

maximin problems (1). It is quite easy to see (Section 3) that

V1(R) is the radius, r(R), of the (smallest) circle circumscribing R and

that any three (two, if R lies on a line) points of R lying on that

circle are enough to support a worst possible demand distribution. The

evaluation of V1(R), however, is more involved. To this end, in Section 4

we consider matrix games in which one of the players, say the maximizer,

selects as the payoff matrix any (square) symmetric submatrix

from a given symmetric matrix. We obtain necessary conditions

I__ I1IY1II111___1_1__·__I__�·L-· sll__----__111_1�---·---_ I -I Illl�·III_.___I__1�UIPL��-I-�--^----I -I_ ·_
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for the solution of such games. These conditions enable us, for

example, to show, in Section 5, that all the points of R

lying on the circumscribing circle are in the support of a worst possible

demand distribution, and allow us to evaluate the (unique) worst possible

distribution and V1(R) in cases where all the extreme points of R lie on

a circle. Consequently, Vi(R) 4 -r(R) with equality if and only if

the boundary of R coincides with that of a circle.

Finally in Section 6, we present results concerning VK(R) and VK(R)

and the associated worst demand distributions for K>>1. We show that

there are constants and q to which K VK(R) and KK (R) converge respec-

tively for all unit area R's. We have shown elsewhere ([HaM], Theorem 2),

that q = (3 + 24n3)J (= H Ilxlldp where H is a unit area regular hexagon

centered at the origin). In this paper,we show that 2 2 c < < 2. 1

These bounds complement the asymptotic formulas in [Hal and [Ha2]

which are based on specific statistical assumptions about the demand

distributions.

2. K-location Games

The values of VK(R) and VK(R) of the maximin problems in (1) will,

clearly, not change if we allow the "minimizer" to randomize his choice

of centers. Note also that the demand measure w (when w(R 2) = 1 as in

(1)) may be viewed as a probability measure used by the "maximizer" to

randomize the location of x. In this setting, it is quite natural to

consider the following zero-sum games.

1) We conjecture that iT actually coincides with the lower bound.

-_ 1~ _-~ _~_1____·ll lll~.-- ·4 1·I I _- _�_._. _·l�-*L�---Y*IIIOI·*LL�-·I�III� -
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The free K-location game contains two players, one of which,

the maximizer, selects a point x in R while the other, the minimizer,

selects a K-tuple2 C = (cl, c2, ..., cK) of points in R2. The payoff

(paid to the maximizer by the minimizer) is the distance d(x,C) =

min IIx-c.II between x and the closest c.. To mix (randomize) their
lj•K J J

strategies, the maximizer uses the probability measure w on R and the

minimizer uses the probability measure on R2K (the K-fold cartesian

product of R2).3 The expected payoff is

D(w,X) = f d(x,C)d(wxX) = f D(w,C)dX(C) = f D(x,A)dw(x) (2)
RxR2K R2K R

where, by abuse of notation, D(w,C) = f d(x,C)dw(x) and D(x,X) =
R

f d(x,C)dX(C) and where wxA denotes the product of w and 4 .

R2K
Now since the Kernel d(x,c) of the game is continuous in both its

arguments and since R is compact and since so is the K-fold cartesian

product of its convex hull (to which the support of A can be actually

restricted), we know from a simple adaptation of the celebrated minimax

principle (e.g., Theorem IV.6.1 of [O) that there is a saddle point

w*,A- of (optimal) strategies satisfying D(x,A*) D(w*,k*) D(w*,C)

for all x R and all C R . It is straightforward to show that the

2) The order between the elements of C is not important, but for nota-

tional convenience, we will regard C as a K-tuple rather than

as an unordered set.

3) We assume the usual Borel a-algebras on R and on R2K

4) Existence and finiteness of all these integrals as well as the

equality between the iterated integrals and the double integral is

elementary.

1__·_1^_11_1�___1_�___r.�^_C. 1�-·1-lln111111111···IY�L-^-·IY·�^--I�·
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value v* = D(w*,k*) is equal to the tight upper bound VK(R) and that an

optimal strategy for the maximizer is also a worst possible demand

distribution for the free K-median problem in R and vice versa.5 '6

In the restricted K-location game, the maximizer also chooses

a (closed) subset of R, from which the players may select

x and cl, c2, ..., cK. This feature of the problem is equivalent

to restricting the support of to be contained in the K-fold cartezian

product of the support of w. The minimax principle holds in this setting only

locally. For every support the maximizer might choose, there is a saddle

pair of strategies. It is possible to show that there exist an optimal

(maximizing) support7 and an associated pair of optimal strategies w*,A*.

Here too, it is not hard to show that the value v* = D(w*,X*) is equal

to the tight upper bound VK(R) and that an optimal strategy for the

5) Clearly DK(w) = minlCI<K D(w,C) < f D(w,C)dX*(C) = D(w,k*) D(w*,X*)
2K

< D(w*,C) for all w with support in R and for all C R . Thus,VK(R)

< D(w*,k*) - minlcCIK D(w*,C) = DK(w`;). Thus,VK(R) = D(w*,X*) and w*

is a worst possible demand. Conversely, if w* is a worst possible
A 2K

demand, then D(w*,C) minlClK D(w*,C) = D(w*,X ) for all C R2

and thus w* is optimal for the maximizer.

6) Actually to have full correspondence between the game and the free

K-median problem,we should not have restricted the minimizer's to

choose points from R. This restriction is however meaningless when R

is convex or when K + .

7) Consider the topology induced by the Hausdorff metric (u], p. 205)

on F(R), the nonempty closed subsets of R. Then,F(R) is compact in

that topology ([Da p. 253), while the value of the game (as a function

of the support F(R)) is continuous in that topology.

II__·LI__�I1·_LLII__IL__t��LI·�i-.l-_.
_ -· · LIII~~--···-- --- -·--~~~·I --·~~1" 
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maximizer is also a worst possible demand distribution for the restricted

8
K-median problem in R and vice versa.8

3. Free Single Median Problems

As a Doint of departure for our analysis, we first consider the simple case of

the free 1-median problem. The associated game has a kernel d(x,c) = I!x-cl|

9
which is strictly convex in both arguments. It is therefore possible to show

(following, for example, the proof of Theorem IV.4.2 of [Ow], and noting that the

minimizer's choice will always be in the compact convex hull of R) that the mini-

mizer will have a pure (non-randomized) strategy. As a consequence, we have the

following elementary result.

Proposition: The value of the free -location game is

r(R) = min max IIx-cl,
c&R2 xR

i.e., the radius of the smallest circle containing R. The minimizer

will choose the center of this circle while the randomization of the

maximizer may be restricted to any three (or two) extreme points of R

that lie on the boundary of the circle, and whose convex hull contains

the center.

Consequently, V1(R) = r(R) and any three (or two) such points on the cir-

cumscribing circle suffice to support a worst possible demand distribution.

The distribution of demand within such a triple can be found by a well-

known construction from location theory, the inverse construction

8) Following footnote 5, we know that an optimal maximizer strategy w*

is a worst possible distribution on its support S(w*), while a worst

possible distribution w is an optimal maximizer strategy on its

support S(w*). Obviously, w and w must yield the same value.

9) Unless x-c is restricted to some fixed line. In this case, it is just

linear.

�1_1I�1III.I�_·�-- ··i^_LI --�·1-_·__ .111�11111-1~~~~~~~~ - .~__I- Ir.i.C_._.. IIIIXY -·-I~l--r--·-- ---- i
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of the corresponding Weber triangle ([W], [K]); namely, the

demands are proportional to the length of the edges in a tri-

angle with edges parallel to the radii from the center of the bounding

circle, to the corresponding demand points.

4. Restricted Symmetric Games

We next consider the restricted 1-median problem and its associated

game of location. We show that the points in the support of the best

strategy for the maximizer are all equally costly to the minimizer, and

at least as costly to him as any other point in R. In other words,

from among all the points in R, only the most costly are feasible for the

minimizer.

We proceed now with the formal statement and proof of this asser-

tion. Note that the restricted 1-location game on R can be approximated

to any degree of accuracy by a restricted 1-location game on a finite

subset of R. We consider, then, as a first step, only finite R, leaving

to Theorem 2(iii) (and footnote 14) to follow the technical details for the

extension of the subsequent results to the general case.

For R = {x1, x2, ..., x },we simplify our notation somewhat. Let

dij = d(xi xj), wi = w({xi}), Xj = X({xj}), D(w,j) = D(w,xj) and

n n
D(i,X) = D(xi,X), i.e., D(w,j) = wid w D(i,X) = I d .j..

i=1''l~ j=l 1JJ
n n n

Thus,D(w,X) = I D(w,j)X = I wD(i,k) = w.d. . As before,
j=1 j i=1 i,j=l 1 1 

we let S(w) = {in: wi>0} denote the support of w. Similarly, we let

S(X) denote the support of . Consider, then, the maximin problem

(P) max min D(w,j).
w jS(w)

In- ~ ~ ~ ~ ~ ·- I C -^ Y P -
I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~P - -I sL I---
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Note that v(w) = min D(w,j) is piecewise linear, but discontinuous.
jeS(w)

This function is upper-semi-continuous, though, and therefore attains

its maximum over the (compact) n-dimensional simplex, {w&Rn: wi>O for all
n

i and wi = 1}. Our main result, regarding (P) is
i=l

THEOREM 1: Let w solve (P) with value v , then

(i) D(w*,j) < v* for all j = 1, 2, ..., n

and (ii) D(w*,j) = v-, if w > 0.

At first,it might appear as though a simple perturbation argument,

involving shift of weights (probabilities) from points j S(w) with low

D(w,j) into points j {1, 2, ... , n} with high D(w,j), will suffice to

prove the proposition. Consider, however, the simple example in Figure

1, where D(w,4) > D(w,1) = D(w,2) = D(w,3) and {1, 2, 3} c S(w).

Obviously,w does not satisfy the conditions of the proposition. Note,

however,from the geometry of Figure 1, that any single shift of weight

from 1, 2 or 3 into 4 will decrease the cost D(w,j) not only at j = 4,but

w2=1/3

=1

1/3
W4=U d34 =.-/

Figure 1: Increasing Cost by shifting weights

· XLII__UI__�_____^I__111-----�- .__I �- - �-· __� �-- I _
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at some other points as well. One must consider (as in the following

proof) more involved perturbations of w to show that it is not optimal.

Proof (of Theorem 1)

We argue by contradiction. Suppose there are solutions of (P) that

violate (i). Among such solutions, let w* be one with a support of

minimum cardinality. Let S* = S(w*) u {l<j<n: D(w*,j) > v*}. Consider

the free 1-location game in S*10 Its value is equal to v* since a)

D(w*,j) v* for all j S* and b) the existence of w such that D(w,j) >

v* for all j S* contradicts the assumption that v* is the value of (P).

Hence,w* is an optimal strategy for the maximizer in the modified gamell,

and moreover there is a strategy X* (with support in S*) for the minimizer

such that k- = 0 if D(w*,j) > v*, i.e., S(X*) c S(w*) and

D(w*,j) > D(w*,*) D (v* > D(* ,i) for all i,j E S* (3)

where the right most equality follows from the symmetry of the distances

(dij = dji for all i,j).

Now if = w*, then (3) implies D(w*,j) = v* for all jS* which

contradicts the supposition that w* violates (i).

If * w, then consider w w* + (w*-X*) where > 0 is chosen so

that S(w) c S(w*) - {q} for some q S(w*). Such and q exist since

10) Free in the limited sense that the minimizer can choose any point of

the given domain (not R2) independently of the maximizer's support

within S*.

11) To be more precise, the statement holds for the restriction of w* to

S* rather than for w* itself. The difference, though, is merely

semantic since S(w*) c S*.
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S(X*) c S(w*). By (3) we have, for all jS*, D(w,j) = D(w* + O(w*-X*),j)

= D(w*,j) + 6[D(w*,j) - D(X*,j)] > D(w*,j). Hence, w solves (P) and vio-

lates (i) if w* does. The support of w, however, is smaller than that

of w* which contradicts our minimality assumption. Consequently, (i) is

proven. (ii) is an immediate corollary of (i). E

Corollary 1.1: If w solves (P) then

(i) w* is an optimal strategy for both players in the restricted

1-location game in R.

(ii) w* also solves

(P*) max min D(w,j).
w jsS(w*)

(iii) Any with S(w) c S(w*) such that for some VER D(w,j) = v for all

j£S(w'), solves (P) as well.

Proof:

(i) That w* is optimal for the maximizer and that v* is the value

of the game is obvious. Now w* is feasible for the minimizer in that

game, while from Theorem 1 and the symmetry of the distances we have that

D(i,w*) = D(w*,i) <- v* for all l<i<n. Consequently, w* is optimal for

the minimizer as well.

(ii) Moreover,the maximizer gains nothing if the rules of the game

are changed so that the minimizer is unilaterally restricted to S(w*),

while the maximizer is free to use all R. That is, if the minimizer

uses w*, the maximizer cannot do better than v* and may as well adhere

to w*. Consequently, w* solves (P*) as well.



-11-

(iii) is feasible for both players in the free -location game in

S(w*)1o. Hence,v = v* and solves (P). o

Remark 1*

Note that the proofs of Theorem 1 and Corollary 1.1 used only the

symmetry property of the distances (i.e. dij = d.. for all i,j). The

dij's need not satisfy the triangle inequality and may even be negative.

Moreover, the diagonal elements dii need not be zero. Consequently,

Theorem 1 and Corollary 1.1 hold for all real symmetric matrices

{d.I ~n *1 I We may apply these results, then, to similar location games
dij j=1l

defined on general undirected weighted graphs. To point out a possible

area of application of these results in problems without geometric

structure, consider the following reliability design problem.

There are n candidate locations (nodes) among which some commodity

(or activity) is to be distributed. Let wi be the fraction of the

commodity stored at location i. In the case that there is only one

indivisible unit of the commodity, w may represent the fraction of time

or the probability that it is stored at i. If w > O,we say that i

is "active".

Suppose that one of the active locations might be subject to a

catastrophic event (an accident or a hostile attack). Let dij be the

probability of survival at i when a catastrophe occurs at j, and assume that

dij = d... In this setting problem (P) may be interpreted as follows: How
1j J1

should the commodity be distributed if we want to maximize the expected

fraction that survives (or in the indivisible case, the probability of

survival)?
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As an example one might consider the distribution of explosives

between close storage locations, when a spontaneous explosion in one

"active" location may trigger explosions in other locations. The proba-

bility of more than one spontaneous explosion is assumed to be neglig-

ible, and the probability of more than one induced explosion is also

assumed negligible (for example if the cross survival probabilities dij

for ij, are close enough to 1). 0

Remark 2

Whether or not the necessary conditions.provided by Theorem 1 are

also sufficient remains an open question, at least for Euclidean dis-

tances. For general d. 's, however, they are not sufficient, as the
1following counterexample illustrates:

following counterexample illustrates:

dll d12 d13 d14

d21 d22 d23 d24

d31 d 32 d33 d34

d41 d42 d43 d44

Note that for w = (, , 0, 0),

D(w,j) = { 5 for j S(w)
1 for j S(w)

0 10 1 1

10 0 1 1

1 1 0 20

1 1 20 0

we have

= {1,2}

while for w = (0, 0, , ), we have

D(wj) = { 10 for j S(w) = 3,4}
1 for j S(w).

Thus,both candidate solutions satisfy the conditions of Theorem 1, but

only the second is optimal. [
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5. Restricted Single median Problems

We may extend the results and derive further properties of wi to

general (not necessarily finite) compact sets R, using the convexity of

the distance function.

THEOREM 2: Let v* be the value of the restricted 1-location game and

let w' be an optimal strategy for the maximizer. Then

(i) w* is concentrated on the extreme points of R, i.e., S(w*)cR*

(ii) D(w*,c) v* for all c R

(iii) w* is optimal for the minimizer as well.

Proof:

Note first that if the result holds for the convex hull of R, then

it will hold for R. Assume, then, without loss of generality that R is con-

vex, and for simplicity let R have only a finite number of extreme points,

i.e., R is a -gon.

The set T = {c R2: D(w*,c) < v*} is convex since D(w*,c) is convex

in c. The (nonconvex) compact set R - T has finitely many (at most 3)

extreme points consisting of the vertices of R that are in the exterior

of T and of the (at most 2) points of R n T (where T and R, respec-

tively are the boundaries of T and R).

As in the proof of Theorem 1, we know that w* is also optimal in the

free 10 l-location game in R - T. Let '* be the minimizer's strategy in

this game. Since D(x,X*) is convex in x,it assumes its maximum over

R -T at extreme points of R - T. Moreover, we claim that unless R - T is

on a line segment (in which case it is easy to show that w' should be

evenly distributed between the two extreme points), then D(x,*) assumes
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its maximum in R - T only at extreme points. Suppose not;

then D(x,X*) should be constant (=v*) on the line segment between

some pair of the extreme points at which D(x,k*) is maximized. It is possible

to show that this result is possible only if X* is evenly distributed between,

these two extreme points2. By the assumption that R - T is not on a

line segment, it has another extreme point, and by the triangle inequal-

ity,D(x,X*) is larger on that point than on the pair of the supposedly

maximizing extreme points, which is a contradiction. We may conclude,

then, that the support of w*, S(w*) is contained in the finite set (R -

T)* of extreme points of R - T.

6W is clearly optimal, then, also for the restricted -location

game in (R - T)*, and by Theorem ,we have D(w*--,c) v* for all c 

(R - T)*. Together with convexity of D(w*,c),this fact implies that D(w*,c) =

v* for all c R - T. Recalling that,by definition,D(w*,c) < v* for all

c £ T, we may conclude that D(w*,c) v* for all c R, which is the result (ii).

No point of R lies, then, in the exterior of T, and since both R and T

are convex (R - T)*C R*13 and thus S(w*) CR*, which is the result (i).

(iii) follows from (ii) exactly as (i) of Corollary 1.1 follows from

Theorem 1.

12) The strictness of the triangle inequality for non colinear vectors

implies that if D(x,X*) is constant on a line segment, then the

support of * must lie on the line containing that segment. It is

also possible to show that for any point in that segment, the mass of X*

strictly to its right (left) is no more than because otherwise

D(x,X*) will decrease when moving to the right (left). Hence,* k must

have mass at the two end points of the segment.

13) By (ii),R c T u T and thus R - T c T. Since T is convex, R - T

consists of vertices of R and/or of complete edges of R.

Consequently,(R - T)* c R*.
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The technicalities involved in extending the proof for the case

when R has infinitely many extreme points are beyond the scope of the

current discussion.
14 o

- In general, the support of the worst possible demand (= best maxi-

mizer's strategy), w*, need not necessarily include all of the extreme

points of R as is illustrated by the simple counterexample depicted in

Figure 2.

Figure 2: An example where S(w*) R*

14) To outline: for every m there is a polygon R c R, with R c R,
m m

such that max xR minyR x-yll 1/2m. Let v be the value of thex& my&R m
restricted -location game on Rm; then v* - 1/m v v*, i.e.,

m m
v* v as m + c. Furthermore,if w is the associated strategy
m m
(which is concentrated on R* c R), then by the weak* compactness of

m
the set of regular Borel probability measureson R* (or R) in the dual

of the space of continuous functions over R (or R), and by the con-

tinuity of d(x,i) in x, there is a w* with support in R* satisfying

D(w*,c) = lim D(w*,c) < lim v* = v* for all cR. By additional
m-o ' = m-> m

arguments,one can show that D(w*,c) = v* for all cS(w*) and thus

that it is optimal.
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Some straightforward though tedious arguments show that the worst poss-

ible demand on R of this example is evenly distributed among the 3

extreme points x, x2, x3 (i.e., w = w = w = 1/3); the fourth extreme

point x4 does not belong to S(w*).

The following result specifies a class of cases for which the support

S(w*) of the worst possible demand/best maximizer strategy includes all of

the extreme points of R.

THEOREM 3: If R*, the set of extreme points of R, lies on the boundary

of some circle then S(w*) = R. Moreover, the worst possible demand, w*,

is unique.

Proof:

Without loss of generality,assume that R* = {x1, x2, ..., xQ}. The

assertion is trivially true for 2, so we consider only the cases

where 3.

From Theorem 2,we have S(w*) c R*. Assume now that S(w*) R*.

Without loss of generality,assume that x3 S(w*) and that x1 and x2 are

the two points of S(w*) that are next to x3 on the circumference of the

circle (Obviously, there are at least 2 points in S(w*)), as is depicted

in Figure 3.
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)=2r sin(a/2)

Figure 3: Extreme points on a boundary of a circle

By our choice of x1 and x2, S(w*) lies entirely within the circular

arc between x and x2 that does not include x3. Now for any point c on

that arc (and therefore also for any point c S(w*)), we have

II - X31 > +a 1 - + a2 IIC - X211
Or + 2 U + 2

(4)

where 1 and a2 are the circular angles corresponding to the arcs between

x3 and x, and between x3 and x2 as shown in Figure 3. This inequality

follows from the fact that the length of a chord d(a) is a strictly

concave function of the circular angle a corresponding to it (d(a) = 2r

sin a/2 is strictly concave for 0 - a 2).

Now set 6 = min (w*({x1}), w*({x2})) and consider the demand w

defined by

6
a.

w({xj}) = w*({xj}) - + 2 6

w*( {Xj })

if j = 3

if j = 1,2

otherwise.
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The inequality (4) implies that D(w,c) > D(w*,c) for all

c S(w*), which contradicts part (ii) of Corollary 1.1. Consequently,

the assumption S(w'*,) R* is false, and S(w*) = R* is proven.

Assume now that there are two worst possible demands w* and w. From the

previous discussion, we know that S(w*) = S(w) = R*. Thus, D(w*,c) = D(w,c) =

v* for all c R. Clearly, there is a 0 > 0 such that w = w* + 0(w* - w)

is a demand satisfying S(w) R*. And,by the linearity of D(w,c) with

respect to w, we have D(w,c) + v* for all c (w*). But this conclusion

is impossible by the previous result. Consequently,w* is unique. O

Remark 3

An interesting consequence of Theorem 3 and of part (iii) of

Corollary 1.1 is

The matrix of distances D = {d n d lix - x ll generated
ij di==i J I enerated

by n points located on a circle is nonsingular. [Furthermore,D- le (where

e = col(l, 1, ..., 1)) is positive and e'D el= d(

where D-1 {d(-1)n
(where D = {d }i j=l)as a function of the set of points is mono-

tonically decreasing (with respect to inclusion) on the subsets of the

boundary of a circle.]

This result follows from the fact that for any vector u Rn, there exist

c,6 E R and z Rn such that u = yw* + 6z. Thus,Du = yDw* + 6Dz = yv*e

+ 6Dz. Assume now that Du = 0; then Dz = (- V]-)e. The condition

I-yv* > v* is impossible because then by slightly perturbing w* (which is

strictly positive) in the z or -z direction,we can increase the (opti-

mal) cost beyond v* which is assumed maximum already. The condition

= v* is impossible as well because then such a perturbation yields
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non-uniqueness in the maximizing w. Finally, the condition I- *I < v*

is impossible since then the new w will violate part (iii) of Corollary 1.1.

Therefore, Du 0 for all u Rn , and hence D in nonsingular. (The rest

of this result follows from the observation that w* = v*D e and that

1 = e'D e = d(-1 ) )
v* i,j=l ij 

An intuitively appealing consequence is

COROLLARY 3.1: (i) If R is a regular n-gon, then w* is evenly dis-

tributed among the vertices of R. (ii) If R is a circle, then w* is

uniformly distributed on its circumference.

As a consequence, we obtain the following:

COROLLARY 3.2: V1(R) 4 r(R), where r(R) is the radius of the (small-

est) circle containing R.

Proof: For a unit demand uniformly distributed over the circumference

1 T 4
of the bounding circle,we get Dl(w) = f 2r sin d = - r

7 0 Tt

This result should be compared to the proposition in Section 3 which

showed that V1(R) = r(R).
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6. Multiple Medians (K + c)

One might expect the characterization of the maximizer's strategy

(worst case demand distribution) for the -location games (1-median

problems) to be generalizable to K > 2. We found, however, that this exten-

sion is not straightforward. Even the free K-location game, which is trivial for

K=1, becomes, in general, quite involved when K > 2. We will not attempt,

then, to evaluate or characterize the saddle point values and strategies

for K-location games for any finite K > 2. Instead,we consider their

asymptotic behavior. Surprisingly, the free K-location

game that was easy for K = , and thenhard for K > 2,becomes tractable

again as K -+ . We are not so fortunate, however, with the restricted

K-location game. Before we evaluate (estimate) the asymptotic

values and saddlepoints, we introduce the following convergence property

which is a simple application of the results in [Hal] (Lemma 3).

THEOREM 4: (i) There are constants and so that for every bounded

measurable set R with area Ii(R) = 1 with null area boundary (i.e.,

p(3R) = 0),

1/2-lim K /2VK(R) = nand limK VK(R) = 
ken-

Proof: The functionals VK and VK share the following properties (spelled

out here only for VK):

VK +K2 (RUR2 ) < VK (R1) + VK (R2)

VK(XR) = XVK(R) (where XR - {x: xR})
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VK(R+y) = VK(R) (where R+y - {x+y: xR})

K1 < K 2 implies VK2(R) < VKi(R)

V1 ([0,1] ) < .

These properties coincide essentially with properties (P1), (P2),

(P4), (P5) and (P6) of DK(w) as given in Lemma 2 of [Hal], regardless of

the fact that VK is defined on planar subsets while DK is defined on

measures. Note also that if one allowed w(R) = m(R) rather than w(R) = 1

in the definition (1) of VK(or VK), we would have an additional property

of proportionality with respect to the additional parameter m; this property

corresponds to property (P6) in Lemma 2 of [Hal]. Lemmas 3 and 3* of [Hal]

that are stated for a uniform measure with density m can be applied here

since the situation is completely identical (rather than producing an

isomorphic proof). From Lemma 3* of [Hal], then, we obtain the desired result by

substituting m = R (so as to get w(R) = 1). D
~I (R)

What are the asymptotic value constants and n and what are the

associated asymptotic saddlepoint strategies? We have only a partial

solution.

THEOREM 5:

(i) [HaM] n=( + 9 Zn3) 2
3 4 J 3V-

The associated asymptotic saddlepoint strategies are

By asymptotic saddlepoint strategy,we mean a fixed strategy that
tends to optimality (for MAX or for MIN) as K - . So,this a statement
about convergence in the optimality sense and no other. (Although it can
be shown to imply here other modes of convergence).

·I Isg _ _Lli·l_· X__(___ _I·_II__ IILI__I__I__Y__II_____^__41_1 �1_11_1_11_1111_1111�----YI�---___ � � ^·I__ ..



-22-

- maximizer: Randomize uniformly over R

- minimizer: Cover R by K cells of a regular hexagonal tesselation
so as to minimize the cell areas. Now while keeping
the tesselation in place,randomize the position of its
center grid so that every center is uniformly dis-
tributed in its cell.

(ii) 2 / < < 2n.
33 -

(a) The maximizer strategy associated with the lower bound is to uniformly

randomize over a set of 3K points placed in R so as to maximize the minimum

distance between any 2 of them (this choice is (asymptotically) equivalent to a

grid of centers in a hexagonal tesselation or to 3K "dense packed" points,

see Figure 4).

(b) The minimizer strategy associated with the upper bound is to apply the

same strategy as in part (i) of the Theorem with the difference that the K

points chosen are not the randomized grid points themselves, but those points

in the support of the maximizer that are closest to them.

Proof:

(i) see [HaM]

(ii) The lower bound that follows from the strategy described in part (iia)

is at least K/ - .a where a is the distance between adjacent points.

This bound is valid because 2K out of 3K (i.e., 2/3) of the maximizer points

will be at distance at least a from the K minimizer points. Now since

every grid point is adjacent to 6 adjacent equilateral triangles (see

Figure 4) with side a and each such triangle is adjacent, of course, to 3

points,we have (neglecting boundary effects) 2-(3K) triangles that add up

t a 1 in a -1/2
to area 1, i.e., 6K(--a. a) = 1 implying a= - K which when substituted

1/2 a gives the lower bound.into the expression K a gives the lower bound.

111�----·1111_11�1·.�_
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The upper bound is a corollary of (i) and Lemma 6 to follow. i i

LEMMA 6: DK(w) < 2D(w) for all w and K > 1

Proof: We prove this result first for K = 1. Let c* be an optimal non-restricted

center, i.e.,D(w,{c }) = D1(W). Let c* be the point in S(w) that is

closest to c . Clearly, D(w) > wl · ii c* - c*11 , and by the triangle

inequality IIx-cC*I < lix - c + II c* - c* implying that

D1(w) < D(w, c*}) < D(w,{c }) + IwlI c* - c*11 < 2Dl(w).

Now if Dl(w) > D1(w), then c* 0 c* and there is, therefore, a neighborhood

of c* (containing some nonzero demand) where ix-c* l < 1x-c* 11, implying that

the middle inequality in the last displayed expression is strict.

K
If K > 1, then DK(w) = Dl(w.)

K j=1 J

where w. is the part of the demand served by the j-th center in some op-
- K

timal solution. Consequently, DK(w) < E D (w) < E 2D1(Wj) = 
2DK(w) 

j=l j=1

We conclude with an open problem.

- 2 2
Conjecture: n = -

3 3

i.e., the lower bound is essentially the asymptotic value and the 3K cluster

strategy described is optimal for the maximizer.

The pattern of the points in this conjectured maximal arrangement

for the K-median problem is not dissimilar from other conjectured maximal

arrangements of points for the Traveling Salesman problem, ([Fl], [F2]) , for

Steiner's road network problem and for the minimum spanning tree problem

(and even for the value ratio of the two last problems [GP],[P],[CH]) which,

as this partial reference list indicates,have eluded researchers for some

time and to the best of our knowledge are still open.

1__1_111_1__11_11_^_1_11__11---�--X_ LI-I·�L�·I� ll__I�X�_11-.I�··_IIIII�YII-·lpl1�_·__·11__··L·-illi · �-^--l�··�-�P·--·lllIU·lll�-·�___·----�- I�-�-�-��_ C_·L
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