182 research outputs found

    Endothelial Aldehyde Dehydrogenase 2 as a Target to Maintain Vascular Wellness and Function in Ageing

    Get PDF
    Endothelial cells are the main determinants of vascular function, since their dysfunction in response to a series of cardiovascular risk factors is responsible for disease progression and further consequences. Endothelial dysfunction, if not resolved, further aggravates the oxidative status and vessel wall inflammation, thus igniting a vicious cycle. We have furthermore to consider the physiological manifestation of vascular dysfunction and chronic low-grade inflammation during ageing, also known as inflammageing. Based on these considerations, knowledge of the molecular mechanism(s) responsible for endothelial loss-of-function can be pivotal to identify novel targets of intervention with the aim of maintaining endothelial wellness and vessel trophism and function. In this review we have examined the role of the detoxifying enzyme aldehyde dehydrogenase 2 (ALDH2) in the maintenance of endothelial function. Its impairment indeed is associated with oxidative stress and ageing, and in the development of atherosclerosis and neurodegenerative diseases. Strategies to improve its expression and activity may be beneficial in these largely diffused disorders

    The metal-nonoate Ni(SalPipNONO) inhibits in vitro tumor growth, invasiveness and angiogenesis

    Get PDF
    Nitric oxide (NO) exerts conflicting effect on tumor growth and progression, depending on its concentration. We aimed to characterize the anti-cancer activity of a new NO donor, Ni(SalPipNONO) belonging to the class of metal-nonoates, in epithelial derived tumor cells, finally exploring its antiangiogenic properties. Tumor epithelial cells were screened to evaluate the cytotoxic effect of Ni(SalPipNONO), which was able to inhibit cell proliferation in a dose dependent manner, being more effective than the commercial DETA/NO. The human lung carcinoma cells A549 were chosen as model to study the anti-cancer mechanisms exerted by the compound. In these cells, Ni(SalPipNONO) inhibited clonogenicity and cell invasion, while promoting apoptosis. The antitumor activity was partly due to NO-cGMP dependent pathway, contributing to reduced cell number and apoptosis, and partly to the salicylaldehyde moiety and reactive oxygen species (ROS) activated ERK1/2 signaling converging on p53 dependent caspase-3 cleavage. An additional contribution by downstream cycloxygenase-2 (COX-2) derived cyclopentenones may explain the tumor inhibitory activities. As NO has been described to affect tumor angiogenesis, we checked this activity both on tumor and endothelial cell co-cultures and in Matrigel in vivo assay. Our data document that Ni(SalPipNONO) was able to both reduce angiogenic factor expression by tumor cells acting on hypoxia inducible factor-1α (HIF-1 α) level, and endothelial cell functions related to angiogenesis. Collectively, these data confirm the potential use of NO donors and in particular Ni(SalPipNONO) acting through multiple mechanisms, as an agent to be further developed to be used alone or in combination with conventional therapy

    The Nitric Oxide Donor [Zn(PipNONO)Cl] Exhibits Antitumor Activity through Inhibition of Epithelial and Endothelial Mesenchymal Transitions

    Get PDF
    Simple Summary Nitric oxide (NO) plays a critical pathophysiological role in cancer by modulating several processes, such as angiogenesis, tumor growth, and metastatic potential. The aim of this study was to characterize the antitumor effects of a novel NO donor, [Zn(PipNONO)Cl], on the processes of epithelial- and endothelial-mesenchymal transitions (EMT and EndMT), known to actively participate in cancer progression. Two tumor cells lines were used in this study: human lung cancer cells (A549) and melanoma cells (A375), alone and co-cultured with human endothelial cells. Our results demonstrate that both tumor and endothelial cells were targets of NO action, which impaired EMT and EndMT functional and molecular features. Further studies are needed to finalize the therapeutic use of the novel NO donor. Exogenous nitric oxide appears a promising therapeutic approach to control cancer progression. Previously, a nickel-based nonoate, [Ni(SalPipNONO)], inhibited lung cancer cells, along with impairment of angiogenesis. The Zn(II) containing derivatives [Zn(PipNONO)Cl] exhibited a protective effect on vascular endothelium. Here, we have evaluated the antitumor properties of [Zn(PipNONO)Cl] in human lung cancer (A549) and melanoma (A375) cells. Metastasis initiates with the epithelial-mesenchymal transition (EMT) process, consisting of the acquisition of invasive and migratory properties by tumor cells. At not cytotoxic levels, the nonoate significantly impaired A549 and A375 EMT induced by transforming growth factor-beta 1 (TGF-beta 1). Reduction of the mesenchymal marker vimentin, upregulated by TGF-beta 1, and restoration of the epithelial marker E-cadherin, reduced by TGF-beta 1, were detected in both tumor cell lines in the presence of Zn-nonoate. Further, the endothelial-mesenchymal transition achieved in a tumor-endothelial cell co-culture was assessed. Endothelial cells co-cultured with A549 or A375 acquired a mesenchymal phenotype with increased vimentin, alpha smooth muscle actin and Smad2/3, and reduced VE-cadherin. The presence of [Zn(PipNONO)Cl] maintained a typical endothelial phenotype. In conclusion, [Zn(PipNONO)Cl] appears a promising therapeutic tool to control tumor growth and metastasis, by acting on both tumor and endothelial cells, reprogramming the cells toward their physiologic phenotypes

    Involvement of bradykinin B2 receptor in pathological vascularization in oxygen-induced retinopathy in mice and rabbit cornea

    Get PDF
    The identification of components of the kallikrein-kinin system in the vitreous from patients with microvascular retinal diseases suggests that bradykinin (BK) signaling may contribute to pathogenesis of retinal vascular complications. BK receptor 2 (B2R) signaling has been implicated in both pro-inflammatory and pro-angiogenic effects promoted by BK. Here, we investigated the role of BK/B2R signaling in the retinal neovascularization in the oxygen-induced retinopathy (OIR) model. Blockade of B2R signaling by the antagonist fasitibant delayed retinal vascularization in mouse pups, indicating that the retinal endothelium is a target of the BK/B2R system. In the rabbit cornea assay, a model of pathological neoangiogenesis, the B2 agonist kallidin induced vessel sprouting and promoted cornea opacity, a sign of edema and tissue inflammation. In agreement with these results, in the OIR model, a blockade of B2R signaling significantly reduced retinal neovascularization, as determined by the area of retinal tufts, and, in the retinal vessel, it also reduced vascular endothelial growth factor and fibroblast growth factor-2 expression. All together, these findings show that B2R blockade reduces retinal neovascularization and inhibits the expression of proangiogenic and pro-inflammatory cytokines, suggesting that targeting B2R signaling may be an effective strategy for treating ischemic retinopathy

    Targeting endothelial cell metabolism for cardio-protection from the toxicity of antitumor agents

    Get PDF
    The vascular endothelium plays a fundamental role in the maintenance of tissue homeostasis, regulating local blood flow and other physiological processes. Chemotherapeutic drugs and target therapies, including antiangiogenic drugs targeting vascular endothelial growth factor (VEGF) or its receptors, not only efficiently act against tumor growth, but may also induce endothelial dysfunction and cardiovascular toxicity. Continued research efforts aim to better understand, prevent and mitigate these chemotherapy associated cardiovascular diseases. Conventional chemotherapeutic agents, such as anthracyclines, platinum compounds, and taxanes, and newer targeted agents, such as bevacizumab, trastuzumab, and tyrosine kinase inhibitors, have known risk of cardiovascular toxicity, which can limit their effectiveness by promoting increased morbidity and/or mortality. This review describes a) the activity of anticancer agents in inducing endothelial dysfunction, b) the metabolic pathways and signalling cascades which may be targeted by protective agents able to maintain or restore endothelial cell function, such as endothelial nitric oxide synthase/fibroblast growth factor-2 (eNOS-FGF-2) pathway, and c) the drugs/strategies reported to improve endothelial function and to reduce the risks of cardiovascular diseases such as angiotensin converting enzyme inhibitors (ACEi) and beta blockers, that are fundamental therapies in chronic heart failure (HF), as well as non-standard HF treatments such ad nitric oxide donors and antioxidant strategies. There is increasing interest in whether ACEi, beta-blockers, and/or statins might prevent and/or therapeutically control cardiotoxic effects in cancer patients. Maintaining endothelial function during or following treatments with chemotherapeutic agents, without affecting anti-tumor drug-effectiveness, is essential for preserving or recovering cardiovascular homeostasis. In this respect, the early detection and immediate therapy of cardiovascular toxicityappear crucial for substantial recovery of cardiac function in cancer patients

    Use of Nutraceuticals in Angiogenesis-Dependent Disorders

    Get PDF
    The term of angiogenesis refers to the growth of new vessels from pre-existing capillaries. The phenomenon is necessary for physiological growth, repair and functioning of our organs. When occurring in a not regulated manner, it concurs to pathological conditions as tumors, eye diseases, chronic degenerative disorders. On the contrary insufficient neovascularization or endothelial disfunction accompanies ischemic and metabolic disorders. In both the cases an inflammatory and oxidative condition exists in supporting angiogenesis deregulation and endothelial dysfunction. The use of nutraceuticals with antioxidant and anti-inflammatory activities can be a therapeutic option to maintain an adequate vascularization and endothelial cell proper functioning or to blunt aberrant angiogenesis. A revision of the updated literature reports on nutraceuticals to guide endothelial cell wellness and to restore physiological tissue vascularization is the objective of this paper. The critical aspects as well as lacking data for human use will be explored from a pharmacological perspective

    PluS Nanoparticles Loaded with Sorafenib: Synthetic Approach and Their Effects on Endothelial Cells

    Get PDF
    Silica nanostructures are widely investigated for theranostic applications, since relatively mild and easy synthetic methods allow the fabrication of multi-compartment nanoparticles (NPs) and to finely modulate their properties. Here, we report the optimization of a synthetic strategy leading to brightly fluorescent silica NPs with a high loading ability – up to 45 molecules per NP – of Sorafenib, a small molecule acting as antiangiogenic drug. We demonstrate that these NPs can efficiently release the drug and they are able to inhibit endothelial cell proliferation, migration and network formation. Their lyophilization can endow them with long shelf stability while, once in solution, they show a much slower release compared to analogous micellar systems. Interestingly, Sorafenib released from PluS NPs completely prevented endothelial cell responses and post-receptor MAPK signaling ignited by VEGF, one of the major player of tumor angiogenesis. Our results indicate that these theranostic systems represent a promising structure for anti-cancer applications since NPs alone have no cytotoxic effect on cultured endothelial cells, a cell type to which drugs and exogenous material are always in contact once delivere

    Prostaglandin E2 Regulates Angiogenesis via Activation of Fibroblast Growth Factor Receptor-1

    Get PDF
    Prostaglandin E(2) (PGE(2)) behaves as a mitogen in epithelial tumor cells as well as in many other cell types. We investigated the actions of PGE(2) on microvascular endothelial cells (capillary venular endothelial cells) with the purpose of delineating the signaling pathway leading to the acquisition of the angiogenic phenotype and to new vessel formation. PGE(2) (100 nM) produced activation of the fibroblast growth factor receptor 1 (FGFR-1), as measured by its phosphorylation, but not of vascular endothelial growth factor receptor 2. PGE(2) stimulated the EP3 subtype receptor, as deduced by abrogation of EP3 Galpha(i) subunit activity through pertussis toxin. Consistent with this result, in human umbilical venular endothelial cells missing the EP3 receptor, PGE(2) did not phosphorylate FGFR-1. Upon binding to its receptor, PGE(2) initiated an autocrine/paracrine signaling cascade involving the intracellular activation of c-Src, activation of matrix metalloproteinase (predominantly MMP2), which in turn caused the mobilization of membrane-anchored fibroblast growth factor-2 (FGF-2). In fact, in cells unable to release FGF-2 the transfection with both FGFR-1 and EP3 did not result in FGFR-1 phosphorylation in response to PGE(2). Relevance for the FGF2-FGFR-1 system was highlighted by confocal analysis, showing receptor internalization after cell exposure to the prostanoid. ERK1/2 appeared to be the distal signal involved, its phosphorylation being sensitive to either cSrc inhibitor or FGFR-1 blocker. Finally, PGE(2) stimulated cell migration and capillary formation in aortic rings, which were severely reduced by inhibitors of signaling molecules or by receptor antagonist. In conclusion, this study provides evidence for the involvement of FGFR-1 through FGF2 in eliciting PGE(2) angiogenic responses. This signaling pattern is similar to the autocrine-paracrine mechanism which operates in endothelial cells to support neovascular growth

    Divergent effects of quercetin conjugates on angiogenesis

    Get PDF
    The present study reports the activities of quercetin and its main circulating conjugates in man (quercetin-3′-sulphate (Q3′S) and quercetin-3-glucuronide (Q3G)) on in vivo angiogenesis induced by vascular endothelial growth factor (VEGF) and examines the effects of these molecules on cultured endothelial cells. We found opposing effects of quercetin and its metabolites on angiogenesis. While quercetin and Q3G inhibited VEGF-induced endothelial cell functions and angiogenesis, Q3′S per se promoted endothelial cell proliferation and angiogenesis. The inhibitory effect elicited by Q3G was linked to inhibition of extracellular signal-regulated kinases 1/2 (ERK1/2) phosphorylation elicited by VEGF. The activation of endothelial cells by Q3′S was associated to stimulation of VEGF receptor-2 and to downstream signalling activation (phosphatidylinositol-3 kinase/Akt and nitric oxide synthase pathways), ultimately responsible for ERK1/2 phosphorylation. These data indicate that the effects of circulating quercetin conjugates on angiogenesis are different depending on the nature of the conjugate. Q3G andQ3′S are the two major conjugates in plasma, but their ratio is dependenton several factors, so thatinhibition or activation of angiogenesis could be subtly shifted as a result of metabolismin viv
    • …
    corecore