1,588 research outputs found

    Aggrecan, link protein and tenascin-R are essential components of the perineuronal net to protect neurons against iron-induced oxidative stress

    Get PDF
    In Alzheimer’s disease (AD), different types of neurons and different brain areas show differential patterns of vulnerability towards neurofibrillary degeneration, which provides the basis for a highly predictive profile of disease progression throughout the brain that now is widely accepted for neuropathological staging. In previous studies we could demonstrate that in AD cortical and subcortical neurons are constantly less frequently affected by neurofibrillary degeneration if they are enwrapped by a specialized form of the hyaluronan-based extracellular matrix (ECM), the so called ‘perineuronal net’ (PN). PNs are basically composed of large aggregating chondroitin sulphate proteoglycans connected to a hyaluronan backbone, stabilized by link proteins and cross-linked via tenascin-R (TN-R). Under experimental conditions in mice, PN-ensheathed neurons are better protected against iron-induced neurodegeneration than neurons without PN. Still, it remains unclear whether these neuroprotective effects are directly mediated by the PNs or are associated with some other mechanism in these neurons unrelated to PNs. To identify molecular components that essentially mediate the neuroprotective aspect on PN-ensheathed neurons, we comparatively analysed neuronal degeneration induced by a single injection of FeCl3 on four different mice knockout strains, each being deficient for a different component of PNs. Aggrecan, link protein and TN-R were identified to be essential for the neuroprotective properties of PN, whereas the contribution of brevican was negligible. Our findings indicate that the protection of PN-ensheathed neurons is directly mediated by the net structure and that both the high negative charge and the correct interaction of net components are essential for their neuroprotective function

    Phonon and Elastic Instabilities in MoC and MoN

    Full text link
    We present several results related to the instability of MoC and MoN in the B1 (sodium chloride) structure. These compounds were proposed as potential superconductors with moderately high transition temperatures. We show that the elastic instability in B1-structure MoN, demonstrated several years ago, persists at elevated pressures, thus offering little hope of stabilizing this material without chemical doping. For MoC, another material for which stoichiometric fabrication in the B1-structure has not proven possible, we find that all of the cubic elastic constants are positive, indicating elastic stability. Instead, we find X-point phonon instabilities in MoC (and in MoN as well), further illustrating the rich behavior of carbo-nitride materials. We also present additional electronic structure results for several transition metal (Zr, Nb and Mo) carbo-nitride systems and discuss systematic trends in the properties of these materials. Deviations from strict electron counting dependencies are apparent.Comment: 5 pages and 4 trailing figures. Submitted to PR

    Prospective International Multicenter Pelvic Floor Study:Short-Term Follow-Up and Clinical Findings for Combined Pectopexy and Native Tissue Repair

    Get PDF
    Efforts to use traditional native tissue strategies and reduce the use of meshes have been made in several countries. Combining native tissue repair with sufficient mesh applied apical repair might provide a means of effective treatment. The study group did perform and publish a randomized trial focusing on the combination of traditional native tissue repair with pectopexy or sacrocolpopexy and observed no severe or hitherto unknown risks for patients (Noé G.K. J Endourol 2015;29(2):210–215). The short-term follow-up of this international multicenter study carried out now is presented in this article. Material and Methods: Eleven clinics and 13 surgeons in four European counties participated in the trial. In order to ensure a standardized approach and obtain comparable data, all surgeons were obliged to follow a standardized approach for pectopexy, focusing on the area of fixation and the use of a prefabricated mesh (PVDF PRP 3 × 15 Dynamesh). The mesh was solely used for apical repair. All other clinically relevant defects were treated with native tissue repair. Colposuspension or TVT were used for the treatment of incontinence. Data were collected independently for 14 months on a secured server; 501 surgeries were registered and evaluated. Two hundred and sixty-four patients out of 479 (55.1%) returned for the physical examination and interview after 12–18 months. Main Outcome and Results: The mean duration of follow-up was 15 months. The overall success of apical repair was rated positively by 96.9%, and the satisfaction score was rated positively by 95.5%. A positive general recommendation was expressed by 95.1% of patients. Pelvic pressure was reduced in 95.2%, pain in 98.0%, and urgency in 86.0% of patients. No major complications, mesh exposure, or mesh complication occurred during the follow-up period. Conclusion: In clinical routine, pectopexy and concomitant surgery, mainly using native tissue approaches, resulted in high satisfaction rates and favorable clinical findings. The procedure may also be recommended for use by general urogynecological practitioners with experience in laparoscopy

    Synthesis of Fluorine-18 Functionalized Nanoparticles for use as in vivo Molecular Imaging Agents

    Get PDF
    Nanoparticles containing fluorine-18 were prepared from block copolymers made by ring opening metathesis polymerization (ROMP). Using the fast initiating ruthenium metathesis catalyst (H_2IMes)(pyr)_2(Cl)_2Ru=CHPh, low polydispersity amphiphilic block copolymers were prepared from a cinnamoyl-containing hydrophobic norbornene monomer and a mesyl-terminated PEG-containing hydrophilic norbornene monomer. Self-assembly into micelles and subsequent cross-linking of the micelle cores by light-activated dimerization of the cinnamoyl groups yielded stable nanoparticles. Incorporation of fluorine-18 was achieved by nucleophilic displacement of the mesylates by the radioactive fluoride ion with 31% incorporation of radioactivity. The resulting positron-emitting nanoparticles are to be used as in vivo molecular imaging agents for use in tumor imaging

    Access, accountability, and the proliferation of psychological therapy:On the introduction of the IAPT initiative and the transformation of mental healthcare

    Get PDF
    Psychological therapy today plays a key role in UK public mental health. In large part, this has been through the development of the (specifically English) Improving Access to Psychological Therapies (IAPT) programme. Through IAPT, millions of citizens have encountered interventions such as cognitive behaviour therapy, largely for the treatment of depression and anxiety. This article interrogates how this national response to problems of mental ill-health – and the problematization itself – was developed, accounted for, and sustained. By imbricating economic expertise with accounts of mental ill-health and mechanisms of treatment, IAPT has revivified psychological framings of pathology and therapy. However, it has done so in ways that are more familiar within biomedical contexts (e.g. through recourse to randomized controlled trial studies). Today, the initiative is a principal player in relation to which other services are increasingly developed. Indeed, in many respects IAPT has transformed from content to context within UK public mental health (in a process of what I term ‘contextification’). By documenting these developments, this paper contributes to re-centring questions about the place and role of psychology in contemporary healthcare. Doing so helps to complicate assumptions about the dominance of linear forms of (de)biomedicalization in health-systems
    • 

    corecore