41 research outputs found

    Genetic Determinants of Lipids and Cardiovascular Disease Outcomes: A Wide-Angled Mendelian Randomization Investigation.

    Get PDF
    BACKGROUND: Evidence from randomized trials has shown that therapies that lower LDL (low-density lipoprotein)-cholesterol and triglycerides reduce coronary artery disease (CAD) risk. However, there is still uncertainty about their effects on other cardiovascular outcomes. We therefore performed a systematic investigation of causal relationships between circulating lipids and cardiovascular outcomes using a Mendelian randomization approach. METHODS: In the primary analysis, we performed 2-sample multivariable Mendelian randomization using data from participants of European ancestry. We also conducted univariable analyses using inverse-variance weighted and robust methods, and gene-specific analyses using variants that can be considered as proxies for specific lipid-lowering medications. We obtained associations with lipid fractions from the Global Lipids Genetics Consortium, a meta-analysis of 188 577 participants, and genetic associations with cardiovascular outcomes from 367 703 participants in UK Biobank. RESULTS: For LDL-cholesterol, in addition to the expected positive associations with CAD risk (odds ratio [OR] per 1 SD increase, 1.45 [95% CI, 1.35-1.57]) and other atheromatous outcomes (ischemic cerebrovascular disease and peripheral vascular disease), we found independent associations of genetically predicted LDL-cholesterol with abdominal aortic aneurysm (OR, 1.75 [95% CI, 1.40-2.17]) and aortic valve stenosis (OR, 1.46 [95% CI, 1.25-1.70]). Genetically predicted triglyceride levels were positively associated with CAD (OR, 1.25 [95% CI, 1.12-1.40]), aortic valve stenosis (OR, 1.29 [95% CI, 1.04-1.61]), and hypertension (OR, 1.17 [95% CI, 1.07-1.27]), but inversely associated with venous thromboembolism (OR, 0.79 [95% CI, 0.67-0.93]) and hemorrhagic stroke (OR, 0.78 [95% CI, 0.62-0.98]). We also found positive associations of genetically predicted LDL-cholesterol and triglycerides with heart failure that appeared to be mediated by CAD. CONCLUSIONS: Lowering LDL-cholesterol is likely to prevent abdominal aortic aneurysm and aortic stenosis, in addition to CAD and other atheromatous cardiovascular outcomes. Lowering triglycerides is likely to prevent CAD and aortic valve stenosis but may increase thromboembolic risk

    Letter To Editor- Antenatal diagnosis of camptomelic dysplasia

    No full text

    Pharmacology and Anti-Addiction Effects of the Novel κ Opioid Receptor Agonist Mesyl Sal B, a Potent and Long-Acting Analogue of Salvinorin A

    No full text
    Background and Purpose: Acute activation of κ opioid (KOP) receptors results in anticocaine-like effects, but adverse effects, such as dysphoria, aversion, sedation and depression, limit their clinical development. Salvinorin A, isolated from the plant Salvia divinorum, and its semi-synthetic analogues have been shown to have potent KOP receptor agonist activity and may induce a unique response with similar anticocaine addiction effects as the classic KOP receptor agonists, but with a different side effect profile. Experimental Approach: We evaluated the duration of effects of Mesyl Sal B in vivo utilizing antinociception assays and screened for cocaine-prime induced cocaine-seeking behaviour in self-administering rats to predict anti-addiction effects. Cellular transporter uptake assays and in vitro voltammetry were used to assess modulation of dopamine transporter (DAT) function and to investigate transporter trafficking and kinase signalling pathways modulated by KOP receptor agonists. Key Results: Mesyl Sal B had a longer duration of action than SalA, had anti-addiction properties and increased DAT function in vitro in a KOP receptor-dependent and Pertussis toxin-sensitive manner. These effects on DAT function required ERK1/2 activation. We identified differences between Mesyl Sal B and SalA, with Mesyl Sal B increasing the Vmax of dopamine uptake without altering cell-surface expression of DAT. Conclusions and Implications: SalA analogues, such as Mesyl Sal B, have potential for development as anticocaine agents. Further tests are warranted to elucidate the mechanisms by which the novel salvinorin-based neoclerodane diterpene KOP receptor ligands produce both anti-addiction and adverse side effects

    Mitofusin 2 mutation drives cell proliferation in Charcot-Marie-Tooth 2A fibroblasts

    No full text
    Dominant mutations in ubiquitously expressed Mitofusin 2 gene (MFN2) cause Charcot-Marie-Tooth type 2A (CMT2A; OMIM 609260), an inherited sensory-motor neuropathy that affects peripheral nerve axons. Mitofusin 2 protein has been found to take part in mitochondrial fusion, mitochondria-endoplasmic reticulum tethering, mitochondrial trafficking along axons, mitochondrial quality control, and various types of cancer, in which MFN2 has been indicated as a tumor suppressor gene. Discordant data on the mitochondrial altered phenotypes in patient-derived fibroblasts harboring MFN2 mutations and in animal models have been reported. We addressed some of these issues by focusing on mitochondria behavior during autophagy and mitophagy in fibroblasts derived from a CMT2AMFN2 patient with an MFN2650G > T/C217F mutation in the GTPase domain. This study investigated mitochondrial dynamics, respiratory capacity, and autophagy/mitophagy, to tackle the multifaceted MFN2 contribution to CMT2A pathogenesis. We found that MFN2 mutated fibroblasts showed impairment of mitochondrial morphology, bioenergetics capacity, and impairment of the early stages of autophagy, but not mitophagy. Unexpectedly, transcriptomic analysis of mutated fibroblasts highlighted marked differentially expressed pathways related to cell population proliferation and extracellular matrix organization. We consistently found the activation of mTORC2/AKT signaling and accelerated proliferation in the CMT2AMFN2 fibroblasts. In conclusion, our evidence indicates that MFN2 mutation can positively drive cell proliferation in CMT2AMFN2 fibroblasts

    Proteomic profiling of soft tissue sarcomas with SWATH mass spectrometry.

    No full text
    Soft tissue sarcomas (STS) are a group of rare and heterogeneous cancers. While large-scale genomic and epigenomic profiling of STS have been undertaken, proteomic analysis has thus far been limited. Here we utilise sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS) for proteomic profiling of formalin fixed paraffin embedded (FFPE) specimens from a cohort of STS patients (n = 36) across four histological subtypes (leiomyosarcoma, synovial sarcoma, undifferentiated pleomorphic sarcoma and dedifferentiated liposarcoma). We quantified 2951 proteins across all cases and show that there is a significant enrichment of gene sets associated with smooth muscle contraction in leiomyosarcoma, RNA splicing regulation in synovial sarcoma and leukocyte activation in undifferentiated pleomorphic sarcoma. We further identified a subgroup of STS cases that have a distinct expression profile in a panel of proteins, with worse survival outcomes when compared to the rest of the cohort. Our study highlights the value of comprehensive proteomic characterisation as a means to identify histotype-specific STS profiles that describe key biological pathways of clinical and therapeutic relevance; as well as for discovering new prognostic biomarkers in this group of rare and difficult-to-treat diseases

    Exome sequencing links the SUMO protease SENP7 with fatal arthrogryposis multiplex congenita, early respiratory failure and neutropenia

    Get PDF
    BackgroundSUMOylation involves the attachment of small ubiquitin-like modifier (SUMO) proteins to specific lysine residues on thousands of substrates with target-specific effects on protein function. Sentrin-specific proteases (SENPs) are proteins involved in the maturation and deconjugation of SUMO. Specifically, SENP7 is responsible for processing polySUMO chains on targeted substrates including the heterochromatin protein 1 & alpha; (HP1 & alpha;). MethodsWe performed exome sequencing and segregation studies in a family with several infants presenting with an unidentified syndrome. RNA and protein expression studies were performed in fibroblasts available from one subject. ResultsWe identified a kindred with four affected subjects presenting with a spectrum of findings including congenital arthrogryposis, no achievement of developmental milestones, early respiratory failure, neutropenia and recurrent infections. All died within four months after birth. Exome sequencing identified a homozygous stop gain variant in SENP7 c.1474C>T; p.(Gln492*) as the probable aetiology. The proband's fibroblasts demonstrated decreased mRNA expression. Protein expression studies showed significant protein dysregulation in total cell lysates and in the chromatin fraction. We found that HP1 & alpha; levels as well as different histones and H3K9me3 were reduced in patient fibroblasts. These results support previous studies showing interaction between SENP7 and HP1 & alpha;, and suggest loss of SENP7 leads to reduced heterochromatin condensation and subsequent aberrant gene expression. ConclusionOur results suggest a critical role for SENP7 in nervous system development, haematopoiesis and immune function in humans
    corecore