173 research outputs found

    Modulation of expression and cellular distribution of p21 by macrophage migration inhibitory factor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The pleiotropic protein MIF, (macrophage migration inhibitory factor), has been demonstrated to modulate several key proteins governing cell cycle control and is considered to contribute to cell growth and differentiation. In this study we investigated the effect of MIF on the expression and cellular distribution of the CDK inhibitor p21.</p> <p>Methods</p> <p>The effect of endogenous MIF on p21 expression and distribution was examined by comparing murine dermal fibroblasts derived from <it>wt </it>and MIF -/- mice. The effect of MIF on cell growth and apoptotic rates was compared using <sup>3</sup>H-Thymidine incorporation assays and annexin V/PI assays respectively. Total p21 protein levels were compared using flow cytometry and western blotting. p21 mRNA was assessed by RT-PCR. Intracellular p21 staining was performed to assess cellular distribution of total protein. To further confirm observations siRNA was used to knockdown MIF protein in <it>wt </it>cells. Cell cycle analysis was performed using PI incorporation assays.</p> <p>Results</p> <p>MIF-/- murine dermal fibroblasts exhibited reduced proliferative responses and were more susceptible to apoptosis. This was associated with reduced p21 expression and nuclear distribution. Treatment with recombinant MIF protein was demonstrated to reduce both basal and induced apoptosis and increase nuclear p21 expression. Reduced nuclear p21 expression was also observed in MIF siRNA treated <it>wt </it>cells.</p> <p>Conclusion</p> <p>The results demonstrate that in the absence of MIF p21 expression and nuclear distribution is reduced which is associated with a reduction in cell growth and increased apoptosis. MIF may therefore play a role in maintaining homeostatic control of p21.</p

    attainment of treat to target endpoints in sle patients with high disease activity in the atacicept phase 2b address ii study

    Get PDF
    Abstract Objective Low disease activity (LDA) and remission are emerging treat-to-target (T2T) endpoints in SLE. However, the rates at which these endpoints are met in patients with high disease activity (HDA) are unknown. Atacicept, which targets B lymphocyte stimulator and a proliferation-inducing ligand, improved disease outcomes in SLE patients with HDA (SLEDAI-2K ≥10) at baseline in the phase 2b ADDRESS II study. This is a post hoc analysis of T2T endpoints in these patients. Methods Patients received weekly atacicept (75 or 150 mg s.c.) or placebo for 24 weeks (1:1:1 randomization). Attainment of three T2T endpoints, LDA (SLEDAI-2K ≤ 2), Lupus Low Disease Activity State (LLDAS) and remission (clinical SLEDAI-2K = 0, prednisone-equivalent ≤5mg/day and Physician's Global Assessment &lt;0.5), was assessed and compared with SLE Responder Index (SRI)-4 and SRI-6 response. Results Of 306 randomized patients, 158 (51.6%) had baseline HDA. At week 24, 37 (23.4%) HDA patients attained LDA, 25 (15.8%) LLDAS and 17 (10.8%) remission. Each of these endpoints was more stringent than SRI-4 (n = 87; 55.1%) and SRI-6 (n = 67; 42.4%). Compared with placebo (n = 52), at week 24, patients treated with atacicept 150 mg (n = 51) were more likely to attain LDA [odds ratio (OR) 3.82 (95% CI: 1.44, 10.15), P = 0.007], LLDAS [OR 5.03 (95% CI: 1.32, 19.06), P = 0.018] or remission [OR 3.98 (95% CI: 0.78, 20.15), P = 0.095]. Conclusion At week 24, LDA, LLDAS and remission were more stringent than SRI-4 and SRI-6 response, were attainable in the HDA population and discriminated between treatment with atacicept 150 mg and placebo. These results suggest that T2T endpoints are robust outcome measures in SLE clinical trials and support further evaluation of atacicept in SLE. Trail registration ClinicalTrials.gov, http://clinicaltrials.gov, NCT01972568

    Glucocorticoid-induced leucine zipper modulates macrophage polarization and apoptotic cell clearance.

    Get PDF
    Macrophages are professional phagocytes that display remarkable plasticity, with a range of phenotypes that can be broadly characterized by the M1/M2 dichotomy. Glucocorticoid (GC)-induced leucine zipper (GILZ) is a protein known to mediate anti-inflammatory and some pro-resolving actions, including as neutrophil apoptosis. However, the role of GILZ in key macrophage function is not well understood. Here, we investigated the role of GILZ on macrophage reprogramming and efferocytosis. Using murine bone-marrow-derived macrophages (BMDMs), we found that GILZ was expressed in naive BMDMs and exhibited increased expression in M2-like macrophages (IL4-differentiated). M1-like macrophages (IFN/LPS-differentiated) from GILZ-/- mice showed higher expression of the M1 markers CD86, MHC class II, iNOS, IL-6 and TNF-α, associated with increased levels of phosphorylated STAT1 and lower IL-10 levels, compared to M1-differentiated cells from WT mice. There were no changes in the M2 markers CD206 and arginase-1 in macrophages from GILZ-/- mice differentiated with IL-4, compared to cells from WT animals. Treatment of M1-like macrophages with TAT-GILZ, a cell-permeable GILZ fusion protein, decreased the levels of CD86 and MHC class II in M1-like macrophages without modifying CD206 levels in M2-like macrophages. In line with the in vitro data, increased numbers of M1-like macrophages were found into the pleural cavity of GILZ-/- mice after LPS-injection, compared to WT mice. Moreover, efferocytosis was defective in the context of GILZ deficiency, both in vitro and in vivo. Conversely, treatment of LPS-injected mice with TAT-GILZ promoted inflammation resolution, associated with lower numbers of M1-like macrophages and increased efferocytosis. Collectively, these data indicate that GILZ is a regulator of important macrophage functions, contributing to macrophage reprogramming and efferocytosis, both key steps for the resolution of inflammation

    Treat-to-target in systemic lupus erythematosus: recommendations from an international task force.

    Get PDF
    The principle of treating-to-target has been successfully applied to many diseases outside rheumatology and more recently to rheumatoid arthritis. Identifying appropriate therapeutic targets and pursuing these systematically has led to improved care for patients with these diseases and useful guidance for healthcare providers and administrators. Thus, an initiative to evaluate possible therapeutic targets and develop treat-to-target guidance was believed to be highly appropriate in the management of systemic lupus erythematosus (SLE) patients as well. Specialists in rheumatology, nephrology, dermatology, internal medicine and clinical immunology, and a patient representative, contributed to this initiative. The majority convened on three occasions in 2012-2013. Twelve topics of critical importance were identified and a systematic literature review was performed. The results were condensed and reformulated as recommendations, discussed, modified and voted upon. The finalised bullet points were analysed for degree of agreement among the task force. The Oxford Centre level of evidence (LoE, corresponding to the research questions) and grade of recommendation (GoR) were determined for each recommendation. The 12 systematic literature searches and their summaries led to 11 recommendations. Prominent features of these recommendations are targeting remission, preventing damage and improving quality of life. LoE and GoR of the recommendations were variable but agreement was >0.9 in each case. An extensive research agenda was identified, and four overarching principles were also agreed upon. Treat-to-target-in-SLE (T2T/SLE) recommendations were developed by a large task force of multispecialty experts and a patient representative. It is anticipated that 'treating-to-target' can and will be applicable to the care of patients with SLE

    A framework for remission in SLE: consensus findings from a large international task force on definitions of remission in SLE (DORIS)

    Get PDF
    Objectives Treat-to-target recommendations have identified 'remission' as a target in systemic lupus erythematosus (SLE), but recognise that there is no universally accepted definition for this. Therefore, we initiated a process to achieve consensus on potential definitions for remission in SLE. Methods An international task force of 60 specialists and patient representatives participated in preparatory exercises, a face-to-face meeting and follow-up electronic voting. The level for agreement was set at 90%. Results The task force agreed on eight key statements regarding remission in SLE and three principles to guide the further development of remission definitions: 1. Definitions of remission will be worded as follows: remission in SLE is a durable state characterised by . (reference to symptoms, signs, routine labs). 2. For defining remission, a validated index must be used, for example, clinical systemic lupus erythematosus disease activity index (SLEDAI)=0, British Isles lupus assessment group (BILAG) 2004 D/E only, clinical European consensus lupus outcome measure (ECLAM)=0; with routine laboratory assessments included, and supplemented with physician's global assessment. 3. Distinction is made between remission off and on therapy: remission off therapy requires the patient to be on no other treatment for SLE than maintenance antimalarials; and remission on therapy allows patients to be on stable maintenance antimalarials, low-dose corticosteroids (prednisone ≤5 mg/day), maintenance immunosuppressives and/or maintenance biologics. The task force also agreed that the most appropriate outcomes (dependent variables) for testing the prognostic value (construct validity) of potential remission definitions are: death, damage, flares and measures of health-related quality of life. Conclusions The work of this international task force provides a framework for testing different definitions of remission against long-term outcomes
    • …
    corecore