57 research outputs found

    Phenolic wastes valorization through bioenergy and bioactive compounds production

    Get PDF
    The agricultural and industrial processing activities produce large amounts of waste that are only partially valorised at different value-added levels (spread on land, animal feed, composting), whereas the main volumes are managed as waste of environmental worry. These by-products are rich sources of bioactive compounds, including phenolic compounds with high antioxidant activity

    Bayesian Modeling for Differential Cryptanalysis of Block Ciphers: a DES instance

    Get PDF
    Encryption algorithms based on block ciphers are among the most widely adopted solutions for providing information security. Over the years, a variety of methods have been proposed to evaluate the robustness of these algorithms to different types of security attacks. One of the most effective analysis techniques is differential cryptanalysis, whose aim is to study how variations in the input propagate on the output. In this work we address the modeling of differential attacks to block cipher algorithms by defining a Bayesian framework that allows a probabilistic estimation of the secret key. In order to prove the validity of the proposed approach, we present as case study a differential attack to the Data Encryption Standard (DES) which, despite being one of the methods that has been most thoroughly analyzed, is still of great interest to the scientific community since its vulnerabilities may have implications on other ciphers

    Properties of an alkali-thermo stable xylanase from Geobacillus thermodenitrificans A333 and applicability in xylooligosaccharides generation

    Get PDF
    An extracellular thermo-alkali-stable and cellulase-free xylanase from Geobacillus thermodenitrificans A333 was purified to homogeneity by ion exchange and size exclusion chromatography. Its molecular mass was 44 kDa as estimated in native and denaturing conditions by gel filtration and SDS-PAGE analysis, respectively. The xylanase (GtXyn) exhibited maximum activity at 70 °C and pH 7.5. It was stable over broad ranges of temperature and pH retaining 88 % of activity at 60 °C and up to 97 % in the pH range 7.5–10.0 after 24 h. Moreover, the enzyme was active up to 3.0 M sodium chloride concentration, exhibiting at that value 70 % residual activity after 1 h. The presence of other metal ions did not affect the activity with the sole exceptions of K+ that showed a stimulating effect, and Fe2+, Co2+ and Hg2+, which inhibited the enzyme. The xylanase was activated by non-ionic surfactants and was stable in organic solvents remaining fully active over 24 h of incubation in 40 % ethanol at 25 °C. Furthermore, the enzyme was resistant to most of the neutral and alkaline proteases tested. The enzyme was active only on xylan, showing no marked preference towards xylans from different origins. The hydrolysis of beechwood xylan and agriculture-based biomass materials yielded xylooligosaccharides with a polymerization degree ranging from 2 to 6 units and xylobiose and xylotriose as main products. These properties indicate G. thermodenitrificans A333 xylanase as a promising candidate for several biotechnological applications, such as xylooligosaccharides preparation

    Serum Albumin Is Inversely Associated With Portal Vein Thrombosis in Cirrhosis

    Get PDF
    We analyzed whether serum albumin is independently associated with portal vein thrombosis (PVT) in liver cirrhosis (LC) and if a biologic plausibility exists. This study was divided into three parts. In part 1 (retrospective analysis), 753 consecutive patients with LC with ultrasound-detected PVT were retrospectively analyzed. In part 2, 112 patients with LC and 56 matched controls were entered in the cross-sectional study. In part 3, 5 patients with cirrhosis were entered in the in vivo study and 4 healthy subjects (HSs) were entered in the in vitro study to explore if albumin may affect platelet activation by modulating oxidative stress. In the 753 patients with LC, the prevalence of PVT was 16.7%; logistic analysis showed that only age (odds ratio [OR], 1.024; P = 0.012) and serum albumin (OR, -0.422; P = 0.0001) significantly predicted patients with PVT. Analyzing the 112 patients with LC and controls, soluble clusters of differentiation (CD)40-ligand (P = 0.0238), soluble Nox2-derived peptide (sNox2-dp; P < 0.0001), and urinary excretion of isoprostanes (P = 0.0078) were higher in patients with LC. In LC, albumin was correlated with sCD4OL (Spearman's rank correlation coefficient [r(s)], -0.33; P < 0.001), sNox2-dp (r(s), -0.57; P < 0.0001), and urinary excretion of isoprostanes (r(s), -0.48; P < 0.0001) levels. The in vivo study showed a progressive decrease in platelet aggregation, sNox2-dp, and urinary 8-iso prostaglandin F2 alpha-III formation 2 hours and 3 days after albumin infusion. Finally, platelet aggregation, sNox2-dp, and isoprostane formation significantly decreased in platelets from HSs incubated with scalar concentrations of albumin. Conclusion: Low serum albumin in LC is associated with PVT, suggesting that albumin could be a modulator of the hemostatic system through interference with mechanisms regulating platelet activation

    Stable population structure in Europe since the Iron Age, despite high mobility

    Get PDF
    Ancient DNA research in the past decade has revealed that European population structure changed dramatically in the prehistoric period (14,000–3000 years before present, YBP), reflecting the widespread introduction of Neolithic farmer and Bronze Age Steppe ancestries. However, little is known about how population structure changed from the historical period onward (3000 YBP - present). To address this, we collected whole genomes from 204 individuals from Europe and the Mediterranean, many of which are the first historical period genomes from their region (e.g. Armenia and France). We found that most regions show remarkable inter-individual heterogeneity. At least 7% of historical individuals carry ancestry uncommon in the region where they were sampled, some indicating cross-Mediterranean contacts. Despite this high level of mobility, overall population structure across western Eurasia is relatively stable through the historical period up to the present, mirroring geography. We show that, under standard population genetics models with local panmixia, the observed level of dispersal would lead to a collapse of population structure. Persistent population structure thus suggests a lower effective migration rate than indicated by the observed dispersal. We hypothesize that this phenomenon can be explained by extensive transient dispersal arising from drastically improved transportation networks and the Roman Empire’s mobilization of people for trade, labor, and military. This work highlights the utility of ancient DNA in elucidating finer scale human population dynamics in recent history

    Bio-inspired Sensory Data Aggregation

    No full text

    Evidence that the xylanase activity from Sulfolobus solfataricus Oalpha is encoded by the endoglucanase precursor gene (sso1354) and characterization of the associated cellulase activity

    No full text
    Sulfolobus solfataricus strain Oalpha was previously isolated for its ability to grow on minimal medium supplemented with xylan as a carbon source. The strain exhibited thermostable xylanase activity but several attempts to identify the gene encoding for the activity failed. Further studies showed that the xylanase displayed activity on carboxymethylcellulose (CMC) and the new activity was characterized. It exhibited an optimal temperature and pH of 95 degrees C and 3.5, respectively, and a half-life of 53 min at 95 degrees C. The enzyme, which was demonstrated to be glycosylated, hydrolyzed CMC in an endo-manner releasing cellobiose and other cello-oligomers. Analysis of the tryptic fragments by tandem mass spectrometry led to identification of the endoglucanase precursor, encoded by the sso1354 gene, as the protein possessing dual activity. The efficiency of the SSO1354 protein in degrading cellulosic and hemicellulosic fractions contained in agronomic residues was tested at low pH and high temperature. Cellulose and xylan were degraded to glucose and xylose at 90 degrees C, pH 4 by an enzyme mix consisting of SSO1354 and additional glycosyl hydrolases from S. solfataricus Oalpha. Given its role in saccharification processes requiring high temperatures and acidic environments, SSO1354 represents an interesting candidate for the utilization of agro-industrial waste for fuel production

    Chestnut Shells as Waste Material for Succinic Acid Production from Actinobacillus succinogenes 130Z

    No full text
    Currently, the full exploitation of waste materials for the production of value-added compounds is one of the potential solutions to lower costs and increase the sustainability of industrial processes. In this respect, the aim of this work was to evaluate the potential of chestnut shells (CSH) as substrate for the growth of Actinobacillus succinogenes 130Z, a natural producer of succinic acid that is a precursor of several bulk chemicals with diverse applications, such as bioplastics production. Hydrolysis of ammonia pretreated CSH in citrate buffer with the Cellic CTec2 enzyme mix was optimized and strain performance was studied in bottle experiments. Data showed co-consumption of citrate, glucose and xylose, which resulted in a change of the relative ratio of produced acids, providing an insight into the metabolism of A. succinogenes that was never described to date. Furthermore, high C:N ratios seems to have a favorable impact on succinic acid production by decreasing byproduct formation. Finally, yield and volumetric production rate of succinic acid were studied in controlled 2 L bioreactors demonstrating the potential use of CSH as renewable raw materia

    A hybrid system for malware detection on big data

    No full text
    In recent years, the increasing diffusion of malicious software has encouraged the adoption of advanced machine learning algorithms to timely detect new threats. A cloud-based approach allows to exploit the big data produced by client agents to train such algorithms, but on the other hand, poses severe challenges on their scalability and performance. We propose a hybrid cloud-based malware detection system in which static and dynamic analyses are combined in order to find a good trade-off between response time and detection accuracy. Our system performs a continuous learning process of its models, based on deep networks, by exploiting the growing amount of data provided by clients. The preliminary experimental evaluation confirms the suitability of the approach proposed here
    • …
    corecore