14,593 research outputs found

    Spectra of Maser Radiation from a Turbulent, Circumnuclear Accretion Disk. III. Circular polarization

    Get PDF
    Calculations are performed for the circular polarization of maser radiation from a turbulent, Keplerian disk that is intended to represent the sub-parsec disk at the nucleus of the galaxy NGC4258. The polarization in the calculations is a result of the Zeeman effect in the regime in which the Zeeman splitting is much less than the spectral linebreadth. Plausible configurations for turbulent magnetic and velocity fields in the disk are created by statistical methods. This turbulence, along with the Keplerian velocity gradients and the blending of the three hyperfine components to form the 6165236_{16} - 5_{23} masing transition of water, are key ingredients in determining the appearance of the polarized spectra that are calculated. These spectra are quite different from the polarized spectra that would be expected for a two-level transition where there is no hyperfine structure. The effect of the hyperfine structure on the polarization is most striking in the calculations for the maser emission that represents the central (or systemic) features of NGC4258. Information about magnetic fields is inferred from observations for polarized maser radiation and bears on the structure of accretion disks.Comment: Latex, uses aastex, eucal, to be published in the Astrophysical Journa

    Evidence for aggregation and export of cyanobacteria and nano-eukaryotes from the Sargasso Sea euphotic zone

    Get PDF
    Pico-plankton and nano-plankton are generally thought to represent a negligible fraction of the total particulate organic carbon (POC) export flux in oligotrophic gyres due to their small size, slow individual sinking rates, and tight grazer control that leads to high rates of recycling in the euphotic zone. Based upon recent inverse modeling and network analysis however, it has been hypothesized that pico-plankton, including the cyanobacteria <i>Synechococcus</i> and <i>Prochlorococcus</i>, and nano-plankton contribute significantly to POC export, via formation and gravitational settling of aggregates and/or consumption of those aggregates by mesozooplankton, in proportion to their contribution to net primary production. This study presents total suspended particulate (>0.7 μm) and particle size-fractionated (10–20 μm, 20–53 μm, >53 μm) pigment concentrations from within and below the euphotic zone in the oligotrophic subtropical North Atlantic, collected using Niskin bottles and large volume in-situ pumps, respectively. Results show the indicator pigments for <i>Synechococcus</i>, <i>Prochlorococcus</i> and nano-eukaryotes are; (1) found at depths down to 500 m, and; (2) essentially constant, relative to the sum of all indicator pigments, across particle size fractions ranging from 10 μm to >53 μm. Based upon the presence of chlorophyll precursor and degradation pigments, and that in situ pumps do not effectively sample fecal pellets, it is concluded that these pigments were redistributed to deeper waters on larger, more rapidly sinking aggregates likely by gravitational settling and/or convective mixing. Using available pigment and ancillary data from these cruises, these <i>Synechococcus, Prochlorococcus</i> and nano-plankton derived aggregates are estimated to contribute 2–13% (5 ± 4%), 1–20% (5 ± 7%), and 6–43% (23 ± 14%) of the total sediment trap POC flux measured on the same cruises, respectively. Furthermore, nano-eukaryotes contribute equally to POC export and autotrophic biomass, while cyanobacteria contributions to POC export are one-tenth of their contribution to autotrophic biomass. These field observations provide direct evidence that pico- and nano-plankton represent a significant contribution to the total POC export via formation of aggregates in this oligotrophic ocean gyre. We suggest that aggregate formation and fate should be included in ecosystem models, particularly as oligotrophic regions are hypothesized to expand in areal extent with warming and increased stratification in the future

    Flow of nitrogen-pressurized Halon 1301 in fire extinguishing systems

    Get PDF
    Halon 1301 which is a halocarbon fire extinguishing agent (CBrF3) used by the U.S. Army for vehicle fire suppression is discussed. Halon 1301 is discharged under nitrogen pressure, and the Halon-nitrogen mixture is a two phase, two component mixture that obeys compressible fluid laws and exhibits choking effects. A computer model was developed to analyze the discharge of Halon and nitrogen from a storage bottle through pipes and nozzles. The model agrees well with data from Halon 1301 discharge tests. The discharge time depends mainly on nozzle area and pipe volume, for given initial conditions. Graphs were developed for estimating discharge times. A nozzle employing multiple concentric converging/diverging nozzles was developed which gave hemispherical coverage

    Statistical analysis of general aviation VG-VGH data

    Get PDF
    To represent the loads spectra of general aviation aircraft operating in the Continental United States, VG and VGH data collected since 1963 in eight operational categories were processed and analyzed. Adequacy of data sample and current operational categories, and parameter distributions required for valid data extrapolation were studied along with envelopes of equal probability of exceeding the normal load factor (n sub z) versus airspeed for gust and maneuver loads and the probability of exceeding current design maneuver, gust, and landing impact n sub z limits. The significant findings are included

    Sun-Sized Water Vapor Masers in Cepheus A

    Full text link
    We present the first VLBI observations of a Galactic water maser (in Chepeus A) made with a very long baseline interferometric array involving the RadioAstron Earth-orbiting satellite station as one of its elements. We detected two distinct components at -16.9 and 0.6 km/s with a fringe spacing of 66 microarcseconds. In total power, the 0.6 km/s component appears to be a single Gaussian component of strength 580 Jy and width of 0.7 km/s. Single-telescope monitoring showed that its lifetime was only 8~months. The absence of a Zeeman pattern implies the longitudinal magnetic field component is weaker than 120 mG. The space-Earth cross power spectrum shows two unresolved components smaller than 15 microarcseconds, corresponding to a linear scale of 1.6 x 10^11 cm, about the diameter of the Sun, for a distance of 700 pc, separated by 0.54 km/s in velocity and by 160 +/-35 microarcseconds in angle. This is the smallest angular structure ever observed in a Galactic maser. The brightness temperatures are greater than 2 x 10^14K, and the line widths are 0.5 km/s. Most of the flux (about 87%) is contained in a halo of angular size of 400 +/- 150 microarcseconds. This structure is associated with the compact HII region HW3diii. We have probably picked up the most prominent peaks in the angular size range of our interferometer. We discuss three dynamical models: (1) Keplerian motion around a central object, (2) two chance overlapping clouds, and (3) vortices caused by flow around an obstacle (i.e., von Karman vortex street) with Strouhal number of about~0.3.Comment: 15 pages, 9 figures. Accepted for publication in ApJ, February 16, 201

    Utilizing Performance Management to Harness the Power of Quality Improvement in Public Health

    Get PDF
    Widespread adoption of quality improvement activities in public health trails other U.S. sectors. Launching the national public health accreditation program of the Public Health Accreditation Board (PHAB) has propelled health department momentum around quality improvement uptake. Domain 9 of the PHAB standards focuses on evaluation and improvement of performance, and is acting as a strong driver for quality improvement and performance management implementation within health departments. Several performance management models have received broad acceptance, including among government and nonprofits, and have direct public health application. Turning Point is a model designed specifically for public health users. All models in current use reinforce customer centricity; streamlined, value added processes; and strategic alignment. Importantly, all are structured to steer quality improvement efforts toward organizational priorities, ensuring that quality improvement complements performance management

    Temporal and dimensional effects in evolutionary graph theory

    Full text link
    The spread in time of a mutation through a population is studied analytically and computationally in fully-connected networks and on spatial lattices. The time, t_*, for a favourable mutation to dominate scales with population size N as N^{(D+1)/D} in D-dimensional hypercubic lattices and as N ln N in fully-connected graphs. It is shown that the surface of the interface between mutants and non-mutants is crucial in predicting the dynamics of the system. Network topology has a significant effect on the equilibrium fitness of a simple population model incorporating multiple mutations and sexual reproduction. Includes supplementary information.Comment: 6 pages, 4 figures Replaced after final round of peer revie
    corecore