492 research outputs found

    Computational neuroimaging strategies for single patient predictions

    Get PDF
    AbstractNeuroimaging increasingly exploits machine learning techniques in an attempt to achieve clinically relevant single-subject predictions. An alternative to machine learning, which tries to establish predictive links between features of the observed data and clinical variables, is the deployment of computational models for inferring on the (patho)physiological and cognitive mechanisms that generate behavioural and neuroimaging responses. This paper discusses the rationale behind a computational approach to neuroimaging-based single-subject inference, focusing on its potential for characterising disease mechanisms in individual subjects and mapping these characterisations to clinical predictions. Following an overview of two main approaches – Bayesian model selection and generative embedding – which can link computational models to individual predictions, we review how these methods accommodate heterogeneity in psychiatric and neurological spectrum disorders, help avoid erroneous interpretations of neuroimaging data, and establish a link between a mechanistic, model-based approach and the statistical perspectives afforded by machine learning

    Double-crested cormorant colony effects on soil chemistry, vegetation structure and avian diversity

    Get PDF
    Effects of Double-crested Cormorants (Phalacrocorax auritus) on vegetation, soil chemistry and tree health have been documented from their breeding colonies in the northern breeding grounds of Canada and the United States (U.S.) but not for areas within the southeastern United States where breeding activity is relatively novel. We compared vegetation and tree metrics such as structure diversity, and soil chemistry among colony islands, uninhabited islands, and abandoned colony islands within Guntersville Reservoir, a temperate forest ecosystem. Avian diversity and community structure were also quantified on these islands. Concentrations of potassium (K), phosphorus (P) and nitrate (NO3 −) in soil were negatively related to cormorant use, while tree diversity was lower on historic (tree mean=4.35 ± 2.46 species) and colony (tree mean=3.91 ± 3.12 species) islands relative to reference islands (tree mean=9.11 ± 3.88 species). Canopy cover was less (min:\u3c20%), and midstories denser on colony and historic islands relative to reference islands. Avian diversity was significantly lower for colony islands (mean=6 ± 3 species) than both reference (11 ± 7 species) and historic (10 ± 7 species) islands. These effects of cormorant nesting can be seen even after 10 years of colony abandonment supporting that cormorants can have long-term effects on insular habitats in temperate forest ecosystems

    Leakage-resilient coin tossing

    Get PDF
    Proceedings 25th International Symposium, DISC 2011, Rome, Italy, September 20-22, 2011.The ability to collectively toss a common coin among n parties in the presence of faults is an important primitive in the arsenal of randomized distributed protocols. In the case of dishonest majority, it was shown to be impossible to achieve less than 1 r bias in O(r) rounds (Cleve STOC ’86). In the case of honest majority, in contrast, unconditionally secure O(1)-round protocols for generating common unbiased coins follow from general completeness theorems on multi-party secure protocols in the secure channels model (e.g., BGW, CCD STOC ’88). However, in the O(1)-round protocols with honest majority, parties generate and hold secret values which are assumed to be perfectly hidden from malicious parties: an assumption which is crucial to proving the resulting common coin is unbiased. This assumption unfortunately does not seem to hold in practice, as attackers can launch side-channel attacks on the local state of honest parties and leak information on their secrets. In this work, we present an O(1)-round protocol for collectively generating an unbiased common coin, in the presence of leakage on the local state of the honest parties. We tolerate t ≤ ( 1 3 − )n computationallyunbounded Byzantine faults and in addition a Ω(1)-fraction leakage on each (honest) party’s secret state. Our results hold in the memory leakage model (of Akavia, Goldwasser, Vaikuntanathan ’08) adapted to the distributed setting. Additional contributions of our work are the tools we introduce to achieve the collective coin toss: a procedure for disjoint committee election, and leakage-resilient verifiable secret sharing.National Defense Science and Engineering Graduate FellowshipNational Science Foundation (U.S.) (CCF-1018064

    Neurophysiologically-informed markers of individual variability and pharmacological manipulation of human cortical gamma

    Get PDF
    The ability to quantify synaptic function at the level of cortical microcircuits from non-invasive data would be enormously useful in the study of neuronal processing in humans and the pathophysiology that attends many neuropsychiatric disorders. Here, we provide proof of principle that one can estimate inter-and intra-laminar interactions among specific neuronal populations using induced gamma responses in the visual cortex of human subjects – using dynamic causal modelling based upon the canonical microcircuit (CMC; a simplistic model of a cortical column). Using variability in induced (spectral) responses over a large cohort of normal subjects, we find that the predominant determinants of gamma responses rest on recurrent and intrinsic connections between superficial pyramidal cells and inhibitory interneurons. Furthermore, variations in beta responses were mediated by inter-subject differences in the intrinsic connections between deep pyramidal cells and inhibitory interneurons. Interestingly, we also show that increasing the self-inhibition of superficial pyramidal cells suppresses the amplitude of gamma activity, while increasing its peak frequency. This systematic and nonlinear relationship was only disclosed by modelling the causes of induced responses. Crucially, we were able to validate this form of neurophysiological phenotyping by showing a selective effect of the GABA re-uptake inhibitor tiagabine on the rate constants of inhibitory interneurons. Remarkably, we were able to recover the pharmacodynamics of this effect over the course of several hours on a per subject basis. These findings speak to the possibility of measuring population specific synaptic function – and its response to pharmacological intervention – to provide subject-specific biomarkers of mesoscopic neuronal processes using non-invasive data. Finally, our results demonstrate that, using the CMC as a proxy, the synaptic mechanisms that underlie the gain control of neuronal message passing within and between different levels of cortical hierarchies may now be amenable to quantitative study using non-invasive (MEG) procedures

    Updated adolescent diagnostic criteria for polycystic ovary syndrome: impact on prevalence and longitudinal body mass index trajectories from birth to adulthood

    Get PDF
    Background: Polycystic ovary syndrome (PCOS) is challenging to diagnose. While the 2003 Rotterdam criteria are widely used for adults, the 2018 international PCOS guideline recommended updated Rotterdam criteria with both hyperandrogenism and oligo-anovulation for adolescents based on evidence-informed expert consensus. This study compared the prevalence of PCOS using updated and original Rotterdam criteria in community-based adolescents and explored long-term body mass index (BMI) trajectories across different diagnostic phenotypes. Methods: Overall, 227 postmenarchal adolescent females from the prospective cohort Raine Study undertook comprehensive PCOS assessment at age 14–16 years. Detailed anthropometric measurements were collected from birth until age 22 years. Cross-sectional and longitudinal BMI were analyzed using t tests and generalized estimating equations. Results: PCOS was diagnosed in 66 (29.1%) participants using original criteria versus 37 (16.3%) participants using updated Rotterdam criteria. Using updated criteria, participants with PCOS had higher BMI than participants without PCOS from prepubertal. Only the phenotype meeting the updated criteria was significantly associated with higher long-term BMI gain whereas other PCOS phenotypes had similar BMI trajectories to participants without PCOS (p < 0.001). Conclusions: The use of the 2018 updated Rotterdam criteria reduces over-diagnosis of PCOS in adolescents and identifies those at the greatest risk of long-term weight gain, a key contributor to disease severity and long-term health implications. The BMI trajectories of females with PCOS on updated criteria diverge prepubertally compared to those without PCOS. This work supports targeting adolescents diagnosed with PCOS on the 2018 updated criteria for early lifestyle interventions to prevent long-term health complications.Chau Thien Tay, Roger J. Hart, Martha Hickey, Lisa J. Moran, Arul Earnest, Dorota A. Doherty, Helena J. Teede and Anju E. Joha

    Low energy scattering cross section ratios of N 14 (p,p) N 14

    Get PDF
    Background: The slowest reaction in the first CNO cycle is N14(p,γ)O15, therefore its rate determines the overall energy production efficiency of the entire cycle. The cross section presents several strong resonance contributions, especially for the ground-state transition. Some of the properties of the corresponding levels in the O15 compound nucleus remain uncertain, which affects the uncertainty in extrapolating the capture cross section to the low energy range of astrophysical interest. Purpose: The N14(p,γ)O15 cross section can be described by using the phenomenological R matrix. Over the energy range of interest, only the proton and γ-ray channels are open. Since resonance capture makes significant contributions to the N14(p,γ)O15 cross section, resonant proton scattering data can be used to provide additional constraints on the R-matrix fit of the capture data. Methods: A 4 MV KN Van de Graaff accelerator was used to bombard protons onto a windowless gas target containing enriched N14 gas over the proton energy range from Ep=1.0 to 3.0 MeV. Scattered protons were detected at θlab=90, 120°, 135°, 150°, and 160° using ruggedized silicon detectors. In addition, a 10 MV FN Tandem Van de Graaff accelerator was used to accelerate protons onto a solid Adenine (C5H5N5) target, of natural isotopic abundance, evaporated onto a thin self-supporting carbon backing, over the energy range from Ep=1.8 to 4.0 MeV. Scattered protons were detected at 28 angles between θlab=30.4° and 167.7° by using silicon photodiode detectors. Results: Relative cross sections were extracted from both measurements. While the relative cross sections do not provide as much constraint as absolute measurements, they greatly reduce the dependence of the data on otherwise significant systematic uncertainties, which are more difficult to quantify. The data are fit simultaneously using an R-matrix analysis and level energies and proton widths are extracted. Even with relative measurements, the statistics and large angular coverage of the measurements result in more confident values for the energies and proton widths of several levels; in particular, the broad resonance at Ec.m.=2.21 MeV, which corresponds to the 3/2+ level at Ex=9.51 MeV in O15. In particular, the s- and d-wave angular-momentum channels are separated. Conclusion: The relative cross sections provide a consistent set of data that can be used to better constrain a full multichannel R-matrix extrapolation of the capture data. It has been demonstrated how the scattering data reduce the uncertainty through a preliminary Monte Carlo uncertainty analysis, but several other issues remain that make large contributions to the uncertainty, which must be addressed by further capture and lifetime measurements

    Non-antibiotic pharmaceuticals exhibit toxicity against Escherichia coli at environmentally relevant concentrations with no evolution of cross-resistance to antibiotics

    Get PDF
    Antimicrobial resistance can arise in the natural environment via prolonged exposure to the effluent surrounding manufacturing facilities. These facilities also produce non-antibiotic pharmaceuticals, and the effect of these on the surrounding microbial communities is less clear; whether they have inherent toxicity, or whether long-term exposure might select for cross-resistance to antibiotics. To this end, we screened four non-antibiotic pharmaceuticals (acetaminophen, ibuprofen, propranolol, met formin) and titanium dioxide for toxicity against Escherichia coli K-12 MG1655 and conducted a 30 day selection experiment to assess the effect of long-term exposure. All compounds reduced the maximum optical density reached by E. coli at a range of concentrations including one of environmental relevance, with transcriptome analysis identifying upregulated genes related to stress response and multidrug efflux in response ibuprofen treatment. The non-antibiotic pharmaceuticals did not select for significant genetic changes following a 30 day exposure, and no evidence of selection for cross-resistance to antibiotics was observed for population evolved in the presence of ibuprofen in spite of the differential gene expression after exposure to this compound. This work suggests that these non-antibiotic pharmaceuticals, at environmental concentrations, do not select for cross-resistance to antibiotics in E. coli
    • …
    corecore