16,997 research outputs found

    The estimation of the propagation delay through the troposphere from microwave radiometer data

    Get PDF
    The uncertainity in propagation delay estimates is due primarily to tropospheric water, the total amount and vertical distribution of which is variable. Because water vapor both delays and attenuates microwave signals, the propagation delay, or wet path length, can be estimated from the microwave brightness temperature near the 22.235 GHz transition of water vapor. The data from a total of 240 radiosonde launches taken simultaneously were analyzed. Estimates of brightness temperature at 19 and 22 GHz and wet path length were made from these data. The wet path length in the zenith direction could be estimated from the surface water vapor density to an accuracy of 5 cm for the summer data and 2 cm for winter data. Using the brightness temperatures, the wet path could be estimated to an accuracy of 0.3 cm. Two dual frequency radiometers were refurbished in order to test these techniques. These radiometers were capable of measuring the difference in the brightness temperature at 30 deg elevation angle and at the zenith to an accuracy of about 1 K. In August 1975, 45 radiosondes were launched over an 11 day period. Brightness temperature measurements were made simultaneously at 19 and 22 GHz with the radiometers. The rms error for the estimation of wet path length from surface meteorological parameters was 3.2 cm, and from the radiometer brightness temperatures, 1.5 cm

    Low-lying Odd-parity States of the Nucleon in Lattice QCD

    Get PDF
    The world's first examination of the odd-parity nucleon spectrum at light quark masses in 2+1 flavor lattice QCD is presented. Configurations generated by the PACS-CS collaboration and made available through the ILDG are used, with the lightest pion mass at 156 MeV. A novel method for tracking the individual energy eigenstates as the quark mass changes is introduced. The success of this approach reveals the flow of the states towards the physical masses. Using the correlation matrix method, the two lowest-energy states revealed are found to be in accord with the physical spectrum of Nature.Comment: 5 page

    Roper Resonance in 2+1 Flavor QCD

    Full text link
    The low-lying even-parity states of the nucleon are explored in lattice QCD using the PACS-CS collaboration 2+1-flavor dynamical-QCD gauge-field configurations made available through the International Lattice Datagrid (ILDG). The established correlation-matrix approach is used, in which various fermion source and sink smearings are utilized to provide an effective basis of interpolating fields to span the space of low-lying energy eigenstates. Of particular interest is the nature of the first excited state of the nucleon, the N1/2+N{1/2}^{+} Roper resonance of P11P_{11} pion-nucleon scattering. The Roper state of the present analysis approaches the physical mass, displaying significant chiral curvature at the lightest quark mass. These full QCD results, providing the world's first insight into the nucleon mass spectrum in the light-quark regime, are significantly different from those of quenched QCD and provide interesting insights into the dynamics of QCD.Comment: 7 pages, 5 figures. Revised version with new results to appear in PL

    Precision electromagnetic structure of decuplet baryons in the chiral regime

    Get PDF
    The electromagnetic properties of the baryon decuplet are calculated in quenched QCD on a 20^3 x 40 lattice with a lattice spacing of 0.128 fm using the fat-link irrelevant clover (FLIC) fermion action with quark masses providing a pion mass as low as 300 MeV. Magnetic moments and charge radii are extracted from the electric and magnetic form factors for each individual quark sector. From these, the corresponding baryon properties are constructed. We present results for the higher order moments of the spin-3/2 baryons, including the electric quadrupole moment E2 and the magnetic octupole moment M3. The world's first determination of a non-zero M3 form factor for the Delta baryon is presented. With these results we provide a conclusive analysis which shows that decuplet baryons are deformed. We compare the decuplet baryon results from a similar lattice calculation of the octet baryons. We establish that the environment sensitivity is far less pronounced in the case of the decuplet baryons compared to that in the octet baryons. A surprising result is that the charge radii of the decuplet baryons are generally smaller than that of the octet baryons. The magnetic moment of the Delta^+ reveals a turn over in the low quark mass region, making it smaller than the proton magnetic moment. These results are consistent with the expectations of quenched chiral perturbation theory. A similar turn over is also noticed in the magnetic moment of the Sigma^*0, but not for Xi^* where only kaon loops can appear in quenched QCD. The electric quadrupole moment of the Omega^- baryon is positive when the negative charge factor is included, and is equal to 0.86 +- 0.12 x 10^-2 fm^2, indicating an oblate shape.Comment: 30 pages, 32 figure

    Evidence for aggregation and export of cyanobacteria and nano-eukaryotes from the Sargasso Sea euphotic zone

    Get PDF
    Pico-plankton and nano-plankton are generally thought to represent a negligible fraction of the total particulate organic carbon (POC) export flux in oligotrophic gyres due to their small size, slow individual sinking rates, and tight grazer control that leads to high rates of recycling in the euphotic zone. Based upon recent inverse modeling and network analysis however, it has been hypothesized that pico-plankton, including the cyanobacteria <i>Synechococcus</i> and <i>Prochlorococcus</i>, and nano-plankton contribute significantly to POC export, via formation and gravitational settling of aggregates and/or consumption of those aggregates by mesozooplankton, in proportion to their contribution to net primary production. This study presents total suspended particulate (>0.7 μm) and particle size-fractionated (10–20 μm, 20–53 μm, >53 μm) pigment concentrations from within and below the euphotic zone in the oligotrophic subtropical North Atlantic, collected using Niskin bottles and large volume in-situ pumps, respectively. Results show the indicator pigments for <i>Synechococcus</i>, <i>Prochlorococcus</i> and nano-eukaryotes are; (1) found at depths down to 500 m, and; (2) essentially constant, relative to the sum of all indicator pigments, across particle size fractions ranging from 10 μm to >53 μm. Based upon the presence of chlorophyll precursor and degradation pigments, and that in situ pumps do not effectively sample fecal pellets, it is concluded that these pigments were redistributed to deeper waters on larger, more rapidly sinking aggregates likely by gravitational settling and/or convective mixing. Using available pigment and ancillary data from these cruises, these <i>Synechococcus, Prochlorococcus</i> and nano-plankton derived aggregates are estimated to contribute 2–13% (5 ± 4%), 1–20% (5 ± 7%), and 6–43% (23 ± 14%) of the total sediment trap POC flux measured on the same cruises, respectively. Furthermore, nano-eukaryotes contribute equally to POC export and autotrophic biomass, while cyanobacteria contributions to POC export are one-tenth of their contribution to autotrophic biomass. These field observations provide direct evidence that pico- and nano-plankton represent a significant contribution to the total POC export via formation of aggregates in this oligotrophic ocean gyre. We suggest that aggregate formation and fate should be included in ecosystem models, particularly as oligotrophic regions are hypothesized to expand in areal extent with warming and increased stratification in the future

    PREPARATION, IDENTIFICATION AND BIOLOGICAL PROPERTIES OF NEW FLUORIDE NANOCOMPOUNDS

    Get PDF
    Indexación: Web of Science; Scopus.Nanoparticles (NPs) of new fluoride (SrF2 and MgF2) nanocompounds were synthesized by the simple chemical method of precipitation in ethanol. Synthesis of the strontium fluoride (SrF2)-magnesium oxide (MgO) nanocomposite was achieved through the ultrasonic method. These prepared nanopowders were characterized through Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, Powder X-ray Diffraction (PXRD) and Scanning Electron Microscopy (SEM). FT-IR confirmed the purity of the synthesized fluoride NPs by evaluation of the vibrations, and UV-Visible showed the intense absorption peaks of NPs. PXRD analysis indicated the average of particle size, and SEM demonstrated a nearly spherical morphology of the NPs. The antibacterical properties of the nanopowders on Staphylococcus Aureus, Bacillus Subtilis and E. Aklay bacteria were studied, with the strongest effect by the magnesium fluoride (MgF2) NPs and the SrF2-MgO nanocomposite.http://ref.scielo.org/yfr3f

    Statistical investigation of fatigue crack initiation and growth around chamfered rivet holes in Alclad 2024 T3 as affected by corrosion

    Get PDF
    In panel specimens with rivet holes cracks initiate in the blunted knife edge of the chamfered rivet hole and propagate inward as well as along the hole. The fatigue lifetime to dominant crack information was defined as the number of cycles, N500 micrometer, to formation of a 500 micrometer long crack. Statistical data on N500 micrometer and on crack propagation after N500 micrometer were obtained for a large number of uncorroded specimens and specimens corroded in an ASTM B 117 salt spray. Considerable variation in N500 micrometer and crack propagation behavior was observed from specimen to specimen of the same nominal geometry with chamfered rivet holes increased the probability for both early formation and later formation of a propagating 500 micrometer fatigue crack. The growth of fatigue cracks after 500 micrometer size was little affected by prior salt spray
    • …
    corecore