17 research outputs found

    Genetic and Genome-Wide Association Analysis of Yearling Weight Gain in Israel Holstein Dairy Calves

    No full text
    Yearling weight gain in male and female Israeli Holstein calves, defined as 365 × ((weight − 35)/age at weight) + 35, was analyzed from 814,729 records on 368,255 animals from 740 herds recorded between 1994 and 2021. The variance components were calculated based on valid records from 2008 through 2017 for each sex separately and both sexes jointly by a single-trait individual animal model analysis, which accounted for repeat records on animals. The analysis model also included the square root, linear, and quadratic effects of age at weight. Heritability and repeatability were 0.35 and 0.71 in the analysis of both sexes and similar in the single sex analyses. The regression of yearling weight gain on birth date in the complete data set was −0.96 kg/year. The complete data set was also analyzed by the same model as the variance component analysis, including both sexes and accounting for differing variance components for each sex. The genetic trend for yearling weight gain, including both sexes, was 1.02 kg/year. Genetic evaluations for yearling weight gain was positively correlated with genetic evaluations for milk, fat, protein production, and cow survival but negatively correlated with female fertility. Yearling weight gain was also correlated with the direct effect on dystocia, and increased yearling weight gain resulted in greater frequency of dystocia. Of the 1749 Israeli Holstein bulls genotyped with reliabilities >50%, 1445 had genetic evaluations. As genotyping of these bulls was performed using several single nucleotide polymorhphism (SNP) chip platforms, we included only those markers that were genotyped in >90% of the tested cohort. A total of 40,498 SNPs were retained. More than 400 markers had significant effects after permutation and correction for multiple testing (pnominal < 1 × 10−8). Considering all SNPs simultaneously, 0.69 of variance among the sires’ transmitting ability was explained. There were 24 markers with coefficients of determination for yearling weight gain >0.04. One marker, BTA-75458-no-rs on chromosome 5, explained ≈6% of the variance among the estimated breeding values for yearling weight gain. ARS-BFGL-NGS-39379 had the fifth largest coefficient of determination in the current study and was also found to have a significant effect on weight at an age of 13–14 months in a previous study on Holsteins. Significant genomic effects on yearling weight gain were mainly associated with milk production quantitative trait loci, specifically with kappa casein metabolism

    Additional file 9: Figure S7. of The landscape of sex-differential transcriptome and its consequent selection in human adults

    No full text
    Expression of TSHB and MUCL1 genes in 53 human tissues. Box-plots of women samples are in red and men samples in blue. The pituitary-specific gene TSHB is significantly overexpressed in men. MUCL1 is significantly overexpressed in men skin and in women mammary glands. (PDF 199 kb

    Additional file 17: Table S7. of The landscape of sex-differential transcriptome and its consequent selection in human adults

    No full text
    SDE scores for non-testis sex-specific and moderately sex-specific protein-coding genes across 53 tissues. Values below or above zero denote men- or women-biased expression, respectively. (CSV 177 kb

    Comparing BeadChip and WGS Genotyping: Non-Technical Failed Calling Is Attributable to Additional Variation within the Probe Target Sequence

    No full text
    Microarray-based genomic selection is a central tool to increase the genetic gain of economically significant traits in dairy cattle. Yet, the effectivity of this tool is slightly limited, as estimates based on genotype data only partially explain the observed heritability. In the analysis of the genomes of 17 Israeli Holstein bulls, we compared genotyping accuracy between whole-genome sequencing (WGS) and microarray-based techniques. Using the standard GATK pipeline, the short-variant discovery within sequence reads mapped to the reference genome (ARS-UCD1.2) was compared to the genotypes from Illumina BovineSNP50 BeadChip and to an alternative method, which computationally mimics the hybridization procedure by mapping reads to 50 bp spanning the BeadChip source sequences. The number of mismatches between the BeadChip and WGS genotypes was low (0.2%). However, 17,197 (40% of the informative SNPs) had extra variation within 50 bp of the targeted SNP site, which might interfere with hybridization-based genotyping. Consequently, with respect to genotyping errors, BeadChip varied significantly and systematically from WGS genotyping, introducing null allele-like effects and Mendelian errors (<0.5%), whereas the GATK algorithm of local de novo assembly of haplotypes successfully resolved the genotypes in the extra-variable regions. These findings suggest that the microarray design should avoid polymorphic genomic regions that are prone to extra variation and that WGS data may be used to resolve erroneous genotyping, which may partially explain missing heritability

    A pathogenic variant in the uncharacterized RNF212B gene results in severe aneuploidy male infertility and repeated IVF failure

    No full text
    Summary: Quantitative and qualitative spermatogenic impairments are major causes of men’s infertility. Although in vitro fertilization (IVF) is effective, some couples persistently fail to conceive. To identify causal variants in patients with severe male infertility factor and repeated IVF failures, we sequenced the exome of two consanguineous family members who underwent several failed IVF cycles and were diagnosed with low sperm count and motility. We identified a rare homozygous nonsense mutation in a previously uncharacterized gene, RNF212B, as the causative variant. Recurrence was identified in another unrelated, infertile patient who also faced repeated failed IVF treatments. scRNA-seq demonstrated meiosis-specific expression of RNF212B. Sequence analysis located a protein domain known to be associated with aneuploidy, which can explain multiple IVF failures. Accordingly, FISH analysis revealed a high aneuploidy rate in the patients' sperm cells and their IVF embryos. Finally, inactivation of the Drosophila orthologs significantly reduced male fertility. Given that members of the evolutionary conserved RNF212 gene family are involved in meiotic recombination and crossover maturation, our findings indicate a critical role of RNF212B in meiosis, genome stability, and in human fertility. Since recombination is completely absent in Drosophila males, our findings may indicate an additional unrelated role for the RNF212-like paralogs in spermatogenesis

    Heat stress increases immune cell function in Hexacorallia

    No full text
    Climate change induced heat stress has increased coral bleaching events worldwide. Differentially regulated immune genes are one of the primary responses to heat stress suggesting that immune activation is critical. However, the cellular immune mechanisms of coral bleaching is currently unknown, and it is still not known if the immune response documented during heat stress is a consequence of bleaching or is directly caused by the heat stress itself. To address this question, we have used two model system sea anemones (Order: Actiniaria): Exaiptasia diaphana and Nematostella vectensis . E. diaphana is an established sea anemone model for algal symbiont interaction, while N. vectensis is an established sea anemone model that lacks the algal symbiont. Here, we examined the effect of increased temperature on phagocytic activity, as an indication of immune function. Our data shows that immune cell activity increases during heat stress, while small molecule pinocytosis remains unaffected. We observed an increase in cellular production of reactive oxygen species with increasing temperatures. We also found that the cellular immune activity was not affected by the presence of the Symbiodiniaceae. Our results suggest that the immune activity observed in heat-stress induced bleaching in corals is a fundamental and basic response independent of the bleaching effect. These results establish a foundation for improving our understanding of hexacorallian immune cell biology, and its potential role in coral bleaching
    corecore