2,106 research outputs found

    Chinook habitat restoration decision support tool- Identifying chinook salmon habitat restoration effectiveness based on temperature, flow, and bioenergetics models

    Get PDF
    Stream restoration projects focus on improving habitat for Pacific Salmonids in watersheds throughout the Pacific Northwest. Currently, few comprehensive tools are available for managers to mechanistically predict the improved fish growth that comes with restoration actions, such as riparian acquisitions, riparian planting or levee setbacks. Therefore, managers need tools that can predict salmonid growth potential given different decision scenarios. One approach to address the Puget Sound Partnership’s regional chinook recovery goals would be a linked stream temperature, flow, and fish bioenergetics model that predict chinook growth benefits of different remediation strategies. Considered strategies will include changes to riparian habitat and instream flows. Increasingly, it is recognized that riparian restoration also benefits salmonids through the increased terrestrial food supply. Such a modeling tool, or model-ensemble, would provide at least a two-tiered application. Screening-level predictions of stream temperatures and chinook growth might be based on currently available input data, i.e., widespread estimates from SNTemp and NHD+ model outputs, and reported food availability and diets. A second, more specific model-ensemble output based on segment specific data, much of it currently available, would require a few, relatively minor site-specific values, namely widths, depths, substrate and invertebrate drift. The effectiveness of the decision support modeling tool could be demonstrated at a handful of sites across a range of land uses and watershed sizes with currently available data. This tool would allow managers the ability to predict and compare chinook growth for current and future conditions from different remediation decisions along a specified river reach. Additionally, conducting a sensitivity analysis with the tool, or model-ensemble, will identify essential information needs for more detailed, and improved, site-specific estimates of chinook growth. Such a tool could scale up to generate region-wide maps of potential chinook growth as more Salish Sea-wide temperature, flow, habitat and drift data becomes available

    Prevalence of Noncardiac Findings in Patients Undergoing Cardiac Magnetic Resonance Imaging

    Get PDF
    Purpose. We sought to determine the prevalence of clinically significant non-cardiac abnormalities found in pediatric and adult patients undergoing cardiac magnetic resonance imaging (CMRI), and understand the impact of age on it's occurrence. Methods. We retrospectively reviewed all patients undergoing CMRI between May 2004 and July 2007. Findings were considered significant if they required radiographic or clinical follow-up. Results. A total of 408 patients underwent CMRI during the study period. Twenty two (16%) pediatric patients (age < 19 years, n = 135) were found to have a total of 22 non- cardiac abnormalities, 3 of which were clinically significant. Sixty four (23%) adult patients (age > 19 years, n = 273) were found to have a total of 77 non-cardiac abnormalities, 33 of which were clinically significant. The prevalence of clinically significant non-cardiac abnormalities was 2% in the pediatric cohort and 11% in the adult cohort (P = 0.05). Within the adult population, the prevalence of significant non-cardiac abnormalities increased with advancing age (P = 0.05). Conclusions. In a population of unselected patients undergoing CMRI, unanticipated noncardiac abnormalities were frequently seen. A small number of these were significant, with the prevalence increasing with age

    Role of nutrient-sensing taste 1 receptor (T1R) family members in gastrointestinal chemosensing

    Get PDF
    Luminal nutrient sensing by G-protein-coupled receptors (GPCR) expressed on the apical domain of enteroendocrine cells activates intracellular pathways leading to secretion of gut hormones that control vital physiological processes such as digestion, absorption, food intake and glucose homeostasis. The taste 1 receptor (T1R) family of GPCR consists of three members: T1R1; T1R2; T1R3. Expression of T1R1, T1R2 and T1R3 at mRNA and protein levels has been demonstrated in the intestinal tissue of various species. It has been shown that T1R2-T1R3, in association with G-protein gustducin, is expressed in intestinal K and L endocrine cells, where it acts as the intestinal glucose (sweet) sensor. A number of studies have demonstrated that activation of T1R2-T1R3 by natural sugars and artificial sweeteners leads to secretion of glucagon-like peptides 1&2 (GLP-1 and GLP-2) and glucose dependent insulinotropic peptide (GIP). GLP-1 and GIP enhance insulin secretion; GLP-2 increases intestinal growth and glucose absorption. T1R1-T1R3 combination co-expressed on the apical domain of cholecystokinin (CCK) expressing cells is a luminal sensor for a number of l-amino acids; with amino acid-activation of the receptor eliciting CCK secretion. This article focuses on the role of the gut-expressed T1R1, T1R2 and T1R3 in intestinal sweet and l-amino acid sensing. The impact of exploiting T1R2-T1R3 as a nutritional target for enhancing intestinal glucose absorption and gut structural maturity in young animals is also highlighte

    The 2005 Lake Malawi Scientific Drilling Project

    Get PDF
    No abstract available. doi:10.2204/iodp.sd.2.04.2006</a

    Predicting death in young offenders: a retrospective cohort study

    Get PDF
    Objective: To examine predictors of death in young offenders who have received a custodial sentence using data routinely collected by juvenile justice services. Design: A retrospective cohort of 2849 (2625 male) 11–20-year-olds receiving their first custodial sentence between 1 January 1988 and 31 December 1999 was identified. Main outcome measures: Deaths, date and primary cause of death ascertained from study commencement to 1 March 2003 by data-matching with the National Death Index; measures comprising year of and age at admission, sex, offence profile, any drug offence, multiple admissions and ethnic and Indigenous status, obtained from departmental records. Results: Theoverallmortalityratewas7.2deathsper1000person-yearsofobservation. Younger admission age (hazard ratio [HR], 1.4; 95% CI, 1.0–1.9), repeat admissions (HR, 1.8; 95% CI, 1.1–2.9) and drug offences (HR, 1.5; 95% CI, 1.0–2.1) predicted early death. The role of ethnicity/Aboriginality could only be assessed in cohort entrants from 1996 to 1999. The Asian subcohort showed higher risk of death from drug-related causes (HR, 2.5; 95% CI, 1.1–5.5), more drug offences (relative risk ratio [RRR], 13; 95% CI, 8.5–20.0) and older admission age (oldest group v youngest: RRR, 9.3; 95% CI, 1.3–68.0) than non- Indigenous Australians. Although higher mortality was not identified in Indigenous Australians, this group was more likely to be admitted younger (oldest v youngest: RRR, 0.31; 95% CI, 0.15–0.63) and experience repeat admissions (RRR, 1.6; 95% CI, 1.0–2.4). Conclusions: Young offenders have a much higher death rate than other young Victorians. Early detention, multiple detentions and drug-related offences are indicators of high mortality risk. For these offenders, targeted healthcare while in custody and further mental healthcare and social support after release appear essential if we are to reduce the mortality rate in this group

    Expression of Na+/glucose co-transporter 1 (SGLT1) in the intestine of piglets weaned to different concentrations of dietary carbohydrate

    Get PDF
    Na+/glucose co-transporter 1 (SGLT1) transports dietary sugars from the lumen of the intestine into enterocytes. Regulation of this protein is essential for the provision of glucose to the body and, thus, is important for maintenance of glucose homeostasis. We have assessed expression of SGLT1 at mRNA, protein and functional levels in the intestinal tissue of 28d old piglets weaned onto isoenergetic diets with differing concentrations of digestible carbohydrate (CHO). We show that expression of SGLT1 remains constant when piglets are fed up to 40% CHO-containing diets. However, there is a significant increase in SGLT1 expression when the CHO content of the diet is>50%. Morphometric analyses indicate that the increased expression is not due to a trophic effect. It has been proposed that in rat intestine, in response to a high-CHO diet, GLUT2 (the classical basolateral membrane monosaccharide transporter) is translocated to the luminal membrane of enterocytes to absorb excess dietary glucose. We show, using immunohistochemistry and Western blotting with antibodies raised to amino acids in different epitopes of GLUT2, that under all dietary conditions, low to high CHO, GLUT2 is expressed on the basolateral membrane of pig enterocytes. Furthermore, functional studies indicate that there is no uptake of 2-deoxy-d-glucopyranoside, a specific substrate of Na+-independent glucose transporters into brush-border membrane vesicles isolated from the intestines of piglets either maintained on low- or high-CHO diets. Thus, SGLT1 is the major route for absorption of dietary sugars across the luminal membrane of swine enterocyte

    Expression of Na+/glucose co-transporter 1 (SGLT1) is enhanced by supplementation of the diet of weaning piglets with artificial sweeteners

    Get PDF
    In an intensive livestock production, a shorter suckling period allows more piglets to be born. However, this practice leads to a number of disorders including nutrient malabsorption, resulting in diarrhoea, malnutrition and dehydration. A number of strategies have been proposed to overcome weaning problems. Artificial sweeteners, routinely included in piglets' diet, were thought to enhance feed palatability. However, it is shown in rodent models that when included in the diet, they enhance the expression of Na+/glucose co-transporter (SGLT1) and the capacity of the gut to absorb glucose. Here, we show that supplementation of piglets' feed with a combination of artificial sweeteners saccharin and neohesperidin dihydrochalcone enhances the expression of SGLT1 and intestinal glucose transport function. Artificial sweeteners are known to act on the intestinal sweet taste receptor T1R2/T1R3 and its partner G-protein, gustducin, to activate pathways leading to SGLT1 up-regulation. Here, we demonstrate that T1R2, T1R3 and gustducin are expressed together in the enteroendocrine cells of piglet intestine. Furthermore, gut hormones secreted by the endocrine cells in response to dietary carbohydrates, glucagon-like peptides (GLP)-1, GLP-2 and glucose-dependent insulinotrophic peptide (GIP), are co-expressed with type 1 G-protein-coupled receptors (T1R) and gustducin, indicating that L- and K-enteroendocrine cells express these taste elements. In a fewer endocrine cells, T1R are also co-expressed with serotonin. Lactisole, an inhibitor of human T1R3, had no inhibitory effect on sweetener-induced SGLT1 up-regulation in piglet intestine. A better understanding of the mechanism(s) involved in sweetener up-regulation of SGLT1 will allow the identification of nutritional targets with implications for the prevention of weaning-related malabsorptio

    Determination of sweetener specificity of horse gut-expressed sweet taste receptor T1R2-T1R3 and its significance for energy provision and hydration.

    Get PDF
    Studies carried out in several species have demonstrated that detection of low-calorie sweeteners in the lumen of the intestine, by the sweet receptor, T1R2-T1R3, initiates a signaling pathway leading to enhanced expression and activity of intestinal Na+/glucose cotransporter 1, SGLT1. This results in an increased gut capacity to absorb glucose, sodium chloride and water, the basis for oral rehydration therapy. Horses express T1R2, T1R3 and downstream signaling elements in the intestinal tissue. As such, the potential of sweetener-stimulation of T1R2-T1R3 leading to upregulation of SGLT1 allows the provision of more glucose (energy) and hydration for horses. This is especially important when the need for glucose increases during strenuous exercise, pregnancy, and lactation. There are significant differences among species in the ability to detect sweeteners. Amino acid substitutions and pseudogenization of taste receptor genes underlie these variations. Nothing is known about the sweetener specificity of horse T1R2-T1R3. Using heterologous expression methodology, we demonstrate that sweeteners sucralose, stevia and neohesperidin dihydrochalcone (NHDC) activate horse T1R2-T1R3, but cyclamate does not. Determination of sweetener specificity of equine sweet receptor is crucial for developing suitable dietary additives to optimize glucose absorption, hydration and avoiding the intestinal disease brought about by microbial fermentation of unabsorbed carbohydrate reaching the large intestine
    corecore