38 research outputs found

    Statistical Thermodynamics of Polymer Quantum Systems

    Full text link
    Polymer quantum systems are mechanical models quantized similarly as loop quantum gravity. It is actually in quantizing gravity that the polymer term holds proper as the quantum geometry excitations yield a reminiscent of a polymer material. In such an approach both non-singular cosmological models and a microscopic basis for the entropy of some black holes have arisen. Also important physical questions for these systems involve thermodynamics. With this motivation, in this work, we study the statistical thermodynamics of two one dimensional {\em polymer} quantum systems: an ensemble of oscillators that describe a solid and a bunch of non-interacting particles in a box, which thus form an ideal gas. We first study the spectra of these polymer systems. It turns out useful for the analysis to consider the length scale required by the quantization and which we shall refer to as polymer length. The dynamics of the polymer oscillator can be given the form of that for the standard quantum pendulum. Depending on the dominance of the polymer length we can distinguish two regimes: vibrational and rotational. The first occur for small polymer length and here the standard oscillator in Schr\"odinger quantization is recovered at leading order. The second one, for large polymer length, features dominant polymer effects. In the case of the polymer particles in the box, a bounded and oscillating spectrum that presents a band structure and a Brillouin zone is found. The thermodynamical quantities calculated with these spectra have corrections with respect to standard ones and they depend on the polymer length. For generic polymer length, thermodynamics of both systems present an anomalous peak in their heat capacity CVC_V

    On Loop Quantum Gravity Phenomenology and the Issue of Lorentz Invariance

    Get PDF
    A simple model is constructed which allows to compute modified dispersion relations with effects from loop quantum gravity. Different quantization choices can be realized and their effects on the order of corrections studied explicitly. A comparison with more involved semiclassical techniques shows that there is agreement even at a quantitative level. Furthermore, by contrasting Hamiltonian and Lagrangian descriptions we show that possible Lorentz symmetry violations may be blurred as an artifact of the approximation scheme. Whether this is the case in a purely Hamiltonian analysis can be resolved by an improvement in the effective semiclassical analysis.Comment: 16 pages, RevTeX

    Brane world corrections to scalar vacuum force in RSII-p

    Full text link
    Vacuum force is an interesting low energy test for brane worlds due to its dependence on field's modes and its role in submillimeter gravity experiments. In this work we generalize a previous model example: the scalar field vacuum force between two parallel plates lying in the brane of a Randall-Sundrum scenario extended by pp compact dimensions (RSII-pp). Upon use of Green's function technique, for the massless scalar field, the 4D force is obtained from a zero mode while corrections turn out attractive and depend on the separation between plates as l(6+p)l^{-(6+p)}. For the massive scalar field a quasilocalized mode yields the 4D force with attractive corrections behaving like l(10+p)l^{-(10+p)}. Corrections are negligible w.r.t. 4D force for AdS(5+p)AdS_{(5+p)} radius less than 106\sim 10^{-6}m. Although the p=0p=0 case is not physically viable due to the different behavior in regard to localization for the massless scalar and electromagnetic fields it yields an useful comparison between the dimensional regularization and Green's function techniques as we describe in the discussion.Comment: 14 pages, v2: discussion clarified, reference adde

    Loop Variables for compact two-dimensional quantum electrodynamics

    Get PDF
    Variables parametrized by closed and open curves are defined to reformulate compact U(1) Quantum Electrodynamics in the circle with a massless fermion field. It is found that the gauge invariant nature of these variables accommodates into a regularization scheme for the Hamiltonian and current operators that is specially well suited for the study of the compact case. The zero mode energy spectrum, the value of the axial anomaly and the anomalous commutators this model presents are hence determined in a manifestly gauge invariant manner. Contrary to the non compact case, the zero mode spectrum is not equally spaced and consequently the theory does not lead to the spectrum of a free scalar boson. All the states are invariant under large gauge transformations. In particular, that is the case for the vacuum, and consequently the θ\theta-dependence does not appear.Comment: 24 pages, 1 figure, to be published in Phys. Rev.

    Quantum gravity corrections to neutrino propagation

    Get PDF
    Massive spin-1/2 fields are studied in the framework of loop quantum gravity by considering a state approximating, at a length scale L\cal L much greater than Planck length P=1.2×1033\ell_P=1.2\times 10^{-33}cm, a spin-1/2 field in flat spacetime. The discrete structure of spacetime at P\ell_P yields corrections to the field propagation at scale L\cal L. Next, Neutrino Bursts (pˉ105{\bar p}\approx 10^5GeV) accompaning Gamma Ray Bursts that have travelled cosmological distances, L1010L\approx 10^{10}l.y., are considered. The dominant correction is helicity independent and leads to a time delay w.r.t. the speed of light, cc, of order (pˉP)L/c104({\bar p} \ell_P) L/c\approx 10^4s. To next order in pˉP{\bar p} \ell_P the correction has the form of the Gambini and Pullin effect for photons. Its contribution to time delay is comparable to that caused by the mass term. Finally, a dependence Los1pˉ2PL_{\rm os}^{-1} \propto {\bar p}^2 \ell_P is found for a two-flavour neutrino oscillation length.Comment: RevTeX, 5pp, no figures. Notation of a sum in Eq.(2) improved. Slight modifications in redaction. Final version to appear in Phys. Rev. Let
    corecore