14,014 research outputs found

    A multi-wavelength view of magnetic flaring from PMS stars

    Get PDF
    Flares from the Sun and other stars are most prominently observed in the soft X-ray band. Most of the radiated energy, however, is released at optical/UV wavelengths. In spite of decades of investigation, the physics of flares is not fully understood. Even less is known about the powerful flares routinely observed from pre-main sequence stars, which might significantly influence the evolution of circumstellar disks. Observations of the NGC2264 star forming region were obtained in Dec. 2011, simultaneously with three telescopes, Chandra (X-rays), CoRoT (optical), and Spitzer (mIR), as part of the "Coordinated Synoptic Investigation of NGC2264" (CSI-NGC2264). Shorter Chandra and CoRoT observations were also obtained in March 2008. We analyzed the lightcurves to detect X-ray flares with an optical and/or mIR counterpart. Basic flare properties from the three datasets, such as emitted energies and peak luminosities, were then compared to constrain the spectral energy distribution of the flaring emission and the physical conditions of the emitting regions. Flares from stars with and without circumstellar disks were also compared to establish any difference that might be attributed to the presence of disks. Seventy-eight X-ray flares with an optical and/or mIR counterpart were detected. Their optical emission is found to correlate well with, and to be significantly larger than, the X-ray emission. The slopes of the correlations suggest that the difference becomes smaller for the most powerful flares. The mIR flare emission seems to be strongly affected by the presence of a circumstellar disk: flares from stars with disks have a stronger mIR emission with respect to stars without disks. This might be attributed to the reprocessing of the optical (and X-ray) flare emission by the inner circumstellar disk, providing evidence for flare-induced disk heating.Comment: 16 pages (36 including appendixes), 8 figures (main text), accepted for publication by Astronomy & Astrophysics (section 8

    Deformations of quantum field theories on de Sitter spacetime

    Full text link
    Quantum field theories on de Sitter spacetime with global U(1) gauge symmetry are deformed using the joint action of the internal symmetry group and a one-parameter group of boosts. The resulting theory turns out to be wedge-local and non-isomorphic to the initial one for a class of theories, including the free charged Dirac field. The properties of deformed models coming from inclusions of CAR-algebras are studied in detail.Comment: 26 pages, no figure

    Quantifying structural damage from self-irradiation in a plutonium superconductor

    Full text link
    The 18.5 K superconductor PuCoGa5 has many unusual properties, including those due to damage induced by self-irradiation. The superconducting transition temperature decreases sharply with time, suggesting a radiation-induced Frenkel defect concentration much larger than predicted by current radiation damage theories. Extended x-ray absorption fine-structure measurements demonstrate that while the local crystal structure in fresh material is well ordered, aged material is disordered much more strongly than expected from simple defects, consistent with strong disorder throughout the damage cascade region. These data highlight the potential impact of local lattice distortions relative to defects on the properties of irradiated materials and underscore the need for more atomic-resolution structural comparisons between radiation damage experiments and theory.Comment: 7 pages, 5 figures, to be published in PR

    Comment on "Evidence for Neutrinoless Double Beta Decay"

    Get PDF
    We comment on the recent claim for the experimental observation of neutrinoless double-beta decay. We discuss several limitations in the analysis provided in that paper and conclude that there is no basis for the presented claim.Comment: A comment written to Modern Physics Letters A. 4 pages, no figures. Updated version, accepted for publicatio

    On the equivalence of two deformation schemes in quantum field theory

    Get PDF
    Two recent deformation schemes for quantum field theories on the two-dimensional Minkowski space, making use of deformed field operators and Longo-Witten endomorphisms, respectively, are shown to be equivalent.Comment: 14 pages, no figure. The final version is available under Open Access. CC-B

    Casimir force in brane worlds: coinciding results from Green's and Zeta function approaches

    Full text link
    Casimir force encodes the structure of the field modes as vacuum fluctuations and so it is sensitive to the extra dimensions of brane worlds. Now, in flat spacetimes of arbitrary dimension the two standard approaches to the Casimir force, Green's function and zeta function, yield the same result, but for brane world models this was only assumed. In this work we show both approaches yield the same Casimir force in the case of Universal Extra Dimensions and Randall-Sundrum scenarios with one and two branes added by p compact dimensions. Essentially, the details of the mode eigenfunctions that enter the Casimir force in the Green's function approach get removed due to their orthogonality relations with a measure involving the right hyper-volume of the plates and this leaves just the contribution coming from the Zeta function approach. The present analysis corrects previous results showing a difference between the two approaches for the single brane Randall-Sundrum; this was due to an erroneous hyper-volume of the plates introduced by the authors when using the Green's function. For all the models we discuss here, the resulting Casimir force can be neatly expressed in terms of two four dimensional Casimir force contributions: one for the massless mode and the other for a tower of massive modes associated with the extra dimensions.Comment: 30 pages, title, abstract and discussion have change

    Exchange Bias Induced by the Fe3O4 Verwey transition

    Full text link
    We present a study of the exchange bias in different configurations of V2O3 thin films with ferromagnetic layers. The exchange bias is accompanied by a large vertical shift in the magnetization. These effects are only observed when V2O3 is grown on top of Ni80Fe20 permalloy. The magnitude of the vertical shift is as large as 60% of the total magnetization which has never been reported in any system. X-Ray diffraction studies show that the growth conditions promote the formation of a ferrimagnetic Fe3O4 interlayer. The change in the easy magnetization axis of Fe3O4 across the Verwey transition at 120 K is correlated with the appearance of exchange bias and vertical shift in magnetization. Both phenomena disappear above 120 K, indicating for the first time a direct relationship between the magnetic signature of the Verwey transition and exchange bias.Comment: Accepted for publication Physical Review

    On the spectrum of AdS/CFT beyond supergravity

    Full text link
    We test the spectrum of string theory on AdS_5 x S^5 derived in hep-th/0305052 against that of single-trace gauge invariant operators in free N=4 super Yang-Mills theory. Masses of string excitations at critical tension are derived by extrapolating plane-wave frequencies at g_{YM}=0 down to finite J. On the SYM side, we present a systematic description of the spectrum of single-trace operators and its reduction to PSU(2,2|4) superconformal primaries via a refined Eratostenes' supersieve. We perform the comparison of the resulting SYM/string spectra of charges and multiplicities order by order in the conformal dimension \Delta up to \Delta=10 and find perfect agreement. Interestingly, the SYM/string massive spectrum exhibits a hidden symmetry structure larger than expected, with bosonic subgroup SO(10,2) and thirty-two supercharges.Comment: 28 pages, LaTeX2
    • …
    corecore