2,289 research outputs found
Phytoplankton Size Structure in Association with Mesoscale Eddies off Central-Southern Chile: The Satellite Application of a Phytoplankton Size-Class Model
Understanding the influence of mesoscale and submesoscale features on the structure of phytoplankton is a key aspect in the assessment of their influence on marine biogeochemical cycling and cross-shore exchanges of plankton in Eastern Boundary Current Systems (EBCS). In this study, the spatio-temporal evolution of phytoplankton size classes (PSC) in surface waters associated with mesoscale eddies in the EBCS off central-southern Chile was analyzed. Chlorophyll-a (Chl-a) size-fractionated filtration (SFF) data from in situ samplings in coastal and coastal transition waters were used to tune a three-component (micro-, nano-, and pico-phytoplankton) model, which was then applied to total Chl-a satellite data (ESA OC-CCI product) in order to retrieve the Chl-a concentration of each PSC. A sea surface, height-based eddy-tracking algorithm was used to identify and track one cyclonic (sC) and three anticyclonic (ssAC1, ssAC2, sAC) mesoscale eddies between January 2014 and October 2015. Satellite estimates of PSC and in situ SFF Chl-a data were highly correlated (0.64 < r < 0.87), although uncertainty values for the microplankton fraction were moderate to high (50 to 100% depending on the metric used). The largest changes in size structure took place during the early life of eddies (~2 months), and no major differences in PSC between eddy center and periphery were found. The contribution of the microplankton fraction was ~50% (~30%) in sC and ssAC1 (ssAC2 and sAC) eddies when they were located close to the coast, while nanoplankton was dominant (~60–70%) and picoplankton almost constant (<20%) throughout the lifetime of eddies. These results suggest that the three-component model, which has been mostly applied in oceanic waters, is also applicable to highly productive coastal upwelling systems. Additionally, the PSC changes within mesoscale eddies obtained by this satellite approach are in agreement with results on phytoplankton size distribution in mesoscale and submesoscale features in this region, and are most likely triggered by variations in nutrient concentrations and/or ratios during the eddies’ lifetimes
Paracentral acute middle maculopathy after uneventful ocular surgery with local anaesthetic blocks
OBJECTIVE: To describe the role of local anaesthetic blocks as a potential cause of paracentral acute middle maculopathy (PAMM) after uneventful ocular surgery. METHODS: Retrospective, observational, international, multicentre case series. Nine cases of PAMM with associated visual loss following uneventful ocular surgery with local anaesthetic blocks were observed in a 9-year period (2011-2020). Demographic, ocular and systemic data, anaesthetic data and surgical details were collected. Visual acuity (VA), fundus photography, fluorescein angiography, optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA) images were reviewed. RESULTS: All nine cases were associated with decreased VA at 24 h postoperative check (ranging from hand movement to 20/200). A hyperreflective band within the middle retinal layers was observed in the structural OCT in the acute phase, evolving to thinning and atrophy of the inner retinal layers in sequential follow-up scans performed. Fluorescein angiography showed delayed perfusion in early arterial phase with normal perfusion in late venous phases. OCTA showed decreased perfusion in the deep capillary plexus. Visual recovery was variable between cases during follow-up (ranging from count fingers to 20/20). CONCLUSIONS: A combination of a vasoconstrictive effect of the anaesthetic agent, an intraocular pressure spike and a mechanical effect of the volume of anaesthetic injected may result in decreased retinal artery perfusion and be evidenced as PAMM in OCT scans. PAMM may present as a potential complication of local anaesthetic blocks in cases of unexpected visual loss after uneventful ocular surgery
Differential impact of two risk communications on antipsychotic prescribing to people with dementia in Scotland: segmented regression time series analysis 2001-2011
The two risk communications were associated with reductions in antipsychotic use, in ways which were compatible with marked differences in their content and dissemination. Further research is needed to ensure that the content and dissemination of regulatory risk communications is optimal, and to track their impact on intended and unintended outcomes. Although rates are falling, antipsychotic prescribing in dementia in Scotland remains unacceptably hig
Simonsenia aveniformis sp nov (Bacillariophyceae), molecular phylogeny and systematics of the genus, and a new type of canal raphe system
The genus Simonsenia is reviewed and S. aveniformis described as new for science by light and electron microscopy. The new species originated from estuarine environments in southern Iberia (Atlantic coast) and was isolated into culture. In LM, Simonsenia resembles Nitzschia, with bridges (fibulae) beneath the raphe, which is marginal. It is only electron microscope (EM) examination that reveals the true structure of the raphe system, which consists of a raphe canal raised on a keel (wing), supported by rib like braces (fenestral bars) and tube-like portulae; between the portulae the keel is perforated by open windows (fenestrae). Based on the presence of portulae and a fenestrated keel, Simonsenia has been proposed to be intermediate between Bacillariaceae and Surirellaceae. However, an rbcL phylogeny revealed that Simonsenia belongs firmly in the Bacillariaceae, with which it shares a similar chloroplast arrangement, rather than in the Surirellaceae. Lack of homology between the surirelloid and simonsenioid keels is reflected in subtle differences in the morphology and ontogeny of the portulae and fenestrae. The diversity of Simonsenia has probably been underestimated, particularly in the marine environment.Polish National Science Centre in Cracow within the Maestro program [N 2012/04/A/ST10/00544]; Sciences and Technologies Foundation-FCT (Portugal) [SFRH/BD/62405/2009]info:eu-repo/semantics/publishedVersio
Aharonov-Bohm interference in topological insulator nanoribbons
Topological insulators represent novel phases of quantum matter with an
insulating bulk gap and gapless edges or surface states. The two-dimensional
topological insulator phase was predicted in HgTe quantum wells and confirmed
by transport measurements. Recently, Bi2Se3 and related materials have been
proposed as three-dimensional topological insulators with a single Dirac cone
on the surface and verified by angle-resolved photoemission spectroscopy
experiments. Here, we show unambiguous transport evidence of topological
surface states through periodic quantum interference effects in layered
single-crystalline Bi2Se3 nanoribbons. Pronounced Aharonov-Bohm oscillations in
the magnetoresistance clearly demonstrate the coverage of two-dimensional
electrons on the entire surface, as expected from the topological nature of the
surface states. The dominance of the primary h/e oscillation and its
temperature dependence demonstrate the robustness of these electronic states.
Our results suggest that topological insulator nanoribbons afford novel
promising materials for future spintronic devices at room temperature.Comment: 5 pages, 4 figures, RevTex forma
Chirped pulse Raman amplification in warm plasma: towards controlling saturation
Stimulated Raman backscattering in plasma is potentially an efficient method of amplifying laser pulses to reach exawatt powers because plasma is fully broken down and withstands extremely high electric fields. Plasma also has unique nonlinear optical properties that allow simultaneous compression of optical pulses to ultra-short durations. However, current measured efficiencies are limited to several percent. Here we investigate Raman amplification of short duration seed pulses with different chirp rates using a chirped pump pulse in a preformed plasma waveguide. We identify electron trapping and wavebreaking as the main saturation mechanisms, which lead to spectral broadening and gain saturation when the seed reaches several millijoules for durations of 10's - 100's fs for 250 ps, 800 nm chirped pump pulses. We show that this prevents access to the nonlinear regime and limits the efficiency, and interpret the experimental results using slowly-varying-amplitude, current-averaged particle-in-cell simulations. We also propose methods for achieving higher efficiencies.close0
Could increased axial wall stress be responsible for the development of atheroma in the proximal segment of myocardial bridges?
<p>Abstract</p> <p>Background</p> <p>A recent model describing the mechanical interaction between a stenosis and the vessel wall has shown that axial wall stress can considerably increase in the region immediately proximal to the stenosis during the (forward) flow phases, so that abnormal biological processes and wall damages are likely to be induced in that region. Our objective was to examine what this model predicts when applied to myocardial bridges.</p> <p>Method</p> <p>The model was adapted to the hemodynamic particularities of myocardial bridges and used to estimate by means of a numerical example the cyclic increase in axial wall stress in the vessel segment proximal to the bridge. The consistence of the results with reported observations on the presence of atheroma in the proximal, tunneled, and distal vessel segments of bridged coronary arteries was also examined.</p> <p>Results</p> <p>1) Axial wall stress can markedly increase in the entrance region of the bridge during the cardiac cycle. 2) This is consistent with reported observations showing that this region is particularly prone to atherosclerosis.</p> <p>Conclusion</p> <p>The proposed mechanical explanation of atherosclerosis in bridged coronary arteries indicates that angioplasty and other similar interventions will not stop the development of atherosclerosis at the bridge entrance and in the proximal epicardial segment if the decrease of the lumen of the tunneled segment during systole is not considerably reduced.</p
The Ecology of a Keystone Seed Disperser, the Ant Rhytidoponera violacea
Rhytidoponera violacea (Forel) (Hymenoptera: Formicidae) is a keystone seed disperser in Kwongan heathl and habitats of southwestern Australia. Like many myrmecochorous ants, little is known about the basic biology of this species. In this study various aspects of the biology of R. violacea were examined and the researchers evaluated how these characteristics may influence seed dispersal. R. violacea nesting habits (relatively shallow nests), foraging behavior (scramble competitor and lax food selection criteria), and other life history characteristics complement their role as a mutualist that interacts with the seeds of many plant species
Observational and Physical Classification of Supernovae
This chapter describes the current classification scheme of supernovae (SNe).
This scheme has evolved over many decades and now includes numerous SN Types
and sub-types. Many of these are universally recognized, while there are
controversies regarding the definitions, membership and even the names of some
sub-classes; we will try to review here the commonly-used nomenclature, noting
the main variants when possible. SN Types are defined according to
observational properties; mostly visible-light spectra near maximum light, as
well as according to their photometric properties. However, a long-term goal of
SN classification is to associate observationally-defined classes with specific
physical explosive phenomena. We show here that this aspiration is now finally
coming to fruition, and we establish the SN classification scheme upon direct
observational evidence connecting SN groups with specific progenitor stars.
Observationally, the broad class of Type II SNe contains objects showing strong
spectroscopic signatures of hydrogen, while objects lacking such signatures are
of Type I, which is further divided to numerous subclasses. Recently a class of
super-luminous SNe (SLSNe, typically 10 times more luminous than standard
events) has been identified, and it is discussed. We end this chapter by
briefly describing a proposed alternative classification scheme that is
inspired by the stellar classification system. This system presents our
emerging physical understanding of SN explosions, while clearly separating
robust observational properties from physical inferences that can be debated.
This new system is quantitative, and naturally deals with events distributed
along a continuum, rather than being strictly divided into discrete classes.
Thus, it may be more suitable to the coming era where SN numbers will quickly
expand from a few thousands to millions of events.Comment: Extended final draft of a chapter in the "SN Handbook". Comments most
welcom
Development of Functional Genomic Tools in Trematodes: RNA Interference and Luciferase Reporter Gene Activity in Fasciola hepatica
The growing availability of sequence information from diverse parasites through genomic and transcriptomic projects offer new opportunities for the identification of key mediators in the parasite–host interaction. Functional genomics approaches and methods for the manipulation of genes are essential tools for deciphering the roles of genes and to identify new intervention targets in parasites. Exciting advances in functional genomics for parasitic helminths are starting to occur, with transgene expression and RNA interference (RNAi) reported in several species of nematodes, but the area is still in its infancy in flatworms, with reports in just three species. While advancing in model organisms, there is a need to rapidly extend these technologies to other parasites responsible for several chronic diseases of humans and cattle. In order to extend these approaches to less well studied parasitic worms, we developed a test method for the presence of a viable RNAi pathway by silencing the exogenous reporter gene, firefly luciferase (fLUC). We established the method in the human blood fluke Schistosoma mansoni and then confirmed its utility in the liver fluke Fasciola hepatica. We transformed newly excysted juveniles of F. hepatica by electroporation with mRNA of fLUC and three hours later were able to detect luciferase enzyme activity, concentrated mainly in the digestive ceca. Subsequently, we tested the presence of an active RNAi pathway in F. hepatica by knocking down the exogenous luciferase activity by introduction into the transformed parasites of double-stranded RNA (dsRNA) specific for fLUC. In addition, we tested the RNAi pathway targeting an endogenous F. hepatica gene encoding leucine aminopeptidase (FhLAP), and observed a significant reduction in specific mRNA levels. In summary, these studies demonstrated the utility of RNAi targeting reporter fLUC as a reporter gene assay to establish the presence of an intact RNAi pathway in helminth parasites. These could facilitate the study of gene function and the identification of relevant targets for intervention in organisms that are by other means intractable. More specifically, these results open new perspectives for functional genomics of F. hepatica, which hopefully can lead to the development of new interventions for fascioliasis
- …