25,267 research outputs found
3D environment mapping using the Kinect V2 and path planning based on RRT algorithms
This paper describes a 3D path planning system that is able to provide a solution trajectory for the automatic control of a robot. The proposed system uses a point cloud obtained from the robot workspace, with a Kinect V2 sensor to identify the interest regions and the obstacles of the environment. Our proposal includes a collision-free path planner based on the Rapidly-exploring Random Trees variant (RRT*), for a safe and optimal navigation of robots in 3D spaces. Results on RGB-D segmentation and recognition, point cloud processing, and comparisons between different RRT* algorithms, are presented.Peer ReviewedPostprint (published version
Inhomogeneous soliton ratchets under two ac forces
We extend our previous work on soliton ratchet devices [L. Morales-Molina et
al., Eur. Phys. J. B 37, 79 (2004)] to consider the joint effect of two ac
forces including non-harmonic drivings, as proposed for particle ratchets by
Savele'v et al. [Europhys. Lett. 67}, 179 (2004); Phys. Rev. E {\bf 70} 066109
(2004)]. Current reversals due to the interplay between the phases, frequencies
and amplitudes of the harmonics are obtained. An analysis of the effect of the
damping coefficient on the dynamics is presented. We show that solitons give
rise to non-trivial differences in the phenomenology reported for particle
systems that arise from their extended character. A comparison with soliton
ratchets in homogeneous systems with biharmonic forces is also presented. This
ratchet device may be an ideal candidate for Josephson junction ratchets with
intrinsic large damping
- …