33 research outputs found

    Pseuderanthemum palatiferum (Nees) Radlk extract induces apoptosis via reactive oxygen species-mediated mitochondria-dependent pathway in A549 human lung cancer cells

    Get PDF
    Purpose: To investigate the capacity of aqueous Pseuderanthemum paltiferum leaf extracts (PPA) to induce apoptosis in A549 human lung cancer cells and the possible mechanisms of action.Methods: Human lung cancer A549 cells were cultured in the presence of PPA (0 - 1000 μg/mL). Cell viability was assessed by MTT assay while morphological alterations in the cells were observed by Hoechst 33342/PI double staining. Intracellular reactive oxygen species (ROS) levels and subsequent changes of mitochondrial membrane potential were also investigated. Involvement of caspase-3 activation in the apoptotic pathway was determined.Results: PPA inhibited the growth of A549 cells in a concentration- and time-dependent manner. Major phenotypic apoptotic cell death was evidenced in microscopic images. Furthermore, treatment of A549 cells with PPA resulted in a significant increase in the production of ROS accompanied by attenuation of mitochondrial membrane potential, thus inducing the activation of caspase-3 activity (p < 0.05).Conclusion: PPA exerts anti-cancer activity by suppression of cell viability and induction of ROSmediated mitochondrial dependent apoptosis in A549 cells, and may be a potential candidate for the development of a therapeutic agent for lung cancer.Keywords: Pseuderanthemum palatiferum, Apoptosis, Reactive oxygen species, Mitochondria, Lung cance

    Apoptotic effect of astaxanthin from white shrimp shells on lung cancer A549 cells

    Get PDF
    Purpose: To investigate the anti-cancer potential of astaxanthin from Litopenaeus vannamei encapsulated in liposomes (ASX) to treat lung cancer A549 cells.Methods: Lung adenocarcinoma A549 cells were cultured and treated with ASX, following which cell viability and nuclear staining were performed. Generation of ROS was identified by the DCFH-DA assay while tetramethylrhodamine ethyl ester was used to determine the mitochondrial membrane potential. Flow cytometry was applied to investigate caspase-3/7 activity and cell cycle distribution.Results: ASX inhibited growth of A549 in a concentration- and time- dependent manner. The IC50 values at 24, 48 and 72 h were 53.73, 22.85, 17.46 μg/mL, respectively (p < 0.05). After incubation with ASX, the morphological changes were observed in A549 cells following Hoechst 33342/PI fluorescent staining. ASX increased ROS generation and was associated with the collapse of mitochondrial membrane potential, which subsequently triggered the activation of caspase-3/7 activity leading to apoptosis (p < 0.05). In addition, A549 cells accumulated in the G0/G1 phase.Conclusion: The results suggest that ASX is a valuable nutraceutical agent to target A549 lung cancer cells via ROS-dependent pathway as well as blockage of cell cycle progression. Keywords: Astaxanthin, Litopenaeus vannamei, Lung cancer, A549, Apoptosi

    Expression of VEGF165 and VEGF165b during ovarian follicular development

    No full text
    Objective: To investigate the role of vascular endothelial growth factor (VEGF)165a, VEGF165b, and VEGF receptor (VEGFR) in the development of bovine follicles. Methods: We cultured follicular cells that were collected from small, medium, and large sized bovine follicles with estrogen and measured the expression of VEGF, VEGFR2 and VEGF165b by Western blot analysis and immunofluorescence. Results: The expression of VEGF165 increased in all follicle sizes and the expression of VEGF165b was increased in the small and large follicles after culturing in an estrogen containing medium. The expression of VEGFR2 was increased in the medium and large follicles after culturing with estrogen for 96 h. VEGF165 was activated at 100 ng/mL estrogen in the large follicles for 96 h. In addition, VEGFR2 was upregulated in the medium and large follicles after treated with 100 ng/mL estrogen for 96 h. Conclusions: This evidence suggests that the expression of VEGF165 and VEGFR is associated with estrogen stimulation during the development of bovine follicles and in an autocrine or paracrine manner. This reveals an advantage during oocyte maturation in vitro

    Effects of Astaxanthin from Shrimp Shell on Oxidative Stress and Behavior in Animal Model of Alzheimer’s Disease

    No full text
    This study aimed to investigate the effect of astaxanthin (ASX) extracted and ASX powder from shrimp (Litopenaeus vannamei) shells on Wistar rats with Alzheimer’s disease, induced by amyloid-β (1-42) peptides. In this task, the rats were divided into eight groups: (1) Control, (2) sham operate, (3) negative control (vehicle) + Aβ1-42, (4) ASX extract+Aβ1-42, (5) commercial ASX + Aβ1-42, (6) ASX powder + Aβ1-42, (7) blank powder + Aβ1-42, and (8) vitamin E + Aβ1-42. All treatments were orally administrated for 30 days. At 14- and 29-days post injection, animals were observed in behavioral tests. On the 31st day, animals were sacrificed; the hippocampus and cortex were collected. Those two brain areas were then homogenized and stored for biochemical and histological analysis. The results showed that the Aβ1-42 infused group significantly reduced cognitive ability and increased memory loss, as assessed by the Morris water maze test, novel object recognition test, and novel object location test. Moreover, the Aβ1-42 infused group exhibited a deterioration of oxidative markers, including glutathione peroxidase enzymes (GPx), lipid peroxidation (MDA), products of protein oxidation, and superoxide anion in the cortex and the hippocampus. Meanwhile, ASX powder (10 mg/kg body weight) showed a significant reduction in cognitive and memory impairments and oxidative stress which is greater than ASX extract in the same dose of compound or vitamin E (100 mg/kg body weight). Our study indicates the beneficial properties of ASX in alleviation of cognitive functions and reducing neurodegeneration in Wistar rats induced by amyloid-β (1-42) peptides

    Missing and overexpressing proteins in domestic cat oocytes following vitrification and in vitro maturation as revealed by proteomic analysis

    No full text
    Abstract Background The domestic cat serves as an animal model for assisted reproductive studies of endangered felid species. To date, there are no data on the protein alterations following cryopreservation of oocytes in felid family. Methods Immature (germinal vesicle) domestic cat oocytes were vitrified in the vitrification solution containing 35% ethylene glycol, 20% DMSO and 0.5 mM sucrose. The vitrified-warmed oocytes were matured (metaphase II) in vitro and subjected to proteomic analysis using 1DE SDS-PAGE prefractionation combined with LC–MS/MS. Results A total of 1712 proteins were identified in in vitro matured oocytes. Of the 1712 proteins, 1454 proteins were found in both groups, whereas, 258 proteins were differentially expressed between control and vitrified-warmed groups. In vitrified-warmed oocytes, the missing proteins were membrane and nuclear proteins; whereas, apoptosis and DNA repair proteins were overrepresented. Conclusions The identified missing and overexpressed proteins in vitrified-warmed oocytes represent potential markers of cryoinjuries and the developmental pathways of oocytes. The findings of differential expressed proteins may contribute to effective ways of proteome analysis of oocyte/embryo quality in order to assess safety of cryopreservation in felid species

    Bilateral eyestalk-ablation of the blue swimmer crab, Portunus pelagicus, produces hypertrophy of the androgenic gland and an increase of cells producing insulin-like androgenic gland hormone

    Full text link
    The androgenic glands (AG) of male decapod crustaceans produce insulin-like androgenic gland (IAG) hormone that controls male sex differentiation, growth and behavior. Functions of the AG are inhibited by gonad-inhibiting hormone originating from X-organ-sinus gland complex in the eyestalk. The AG, and its interaction with the eyestalk, had not been studied in the blue swimmer crab, Portunus pelagicus, so we investigated the AG structure, and then changes of the AG and IAG-producing cells following eyestalk ablation. The AG of P. pelagicus is a small endrocrine organ ensheathed in a connective tissue and attached to the distal part of spermatic duct and ejaculatory bulb. The gland is composed of several lobules, each containing two major cell types. Type I cells are located near the periphery of each lobule, and distinguished as small globular cells of 5–7 μm in diameter, with nuclei containing mostly heterochromatin. Type II cells are 13–15 μm in diameter, with nuclei containing mostly euchromatin and prominent nucleoli. Both cell types were immunoreactive with anti-IAG. Following bilateral eyestalk ablation, the AG underwent hypertrophy, and at day 8 had increased approximately 3-fold in size. The percentage of type I cells had increased more than twice compared with controls, while type II cells showed a corresponding decrease

    Cloning of the crustacean hyperglycemic hormone and evidence for molt-inhibiting hormone within the central nervous system of the blue crab Portunus pelagicus

    Full text link
    The crustacean X-organ-sinus gland (XO-SG) complex controls molt-inhibiting hormone (MIH) production, although extra expression sites for MIH have been postulated. Therefore, to explore the expression of MIH and distinguish between the crustacean hyperglycemic hormone (CHH) superfamily, and MIH immunoreactive sites (ir) in the central nervous system (CNS), we cloned a CHH gene sequence for the crab Portunus pelagicus (Ppel-CHH), and compared it with crab CHHtype I and II peptides. Employing multiple sequence alignments and phylogenic analysis, the mature Ppel-CHH peptide exhibited residues common to both CHH-type I and II peptides, and a high degree of identity to the type-I group, but little homology between Ppel-CHH and Ppel-MIH (a type II peptide). This sequence identification then allowed for the use of MIH antisera to further confirm the identity and existence of a MIH-ir 9kDa protein in all neural organs tested by Western blotting, and through immunohistochemistry, MIH-ir in the XO, optic nerve, neuronal cluster 17 of the supraesophageal ganglion, the ventral nerve cord, and cell cluster 22 of the thoracic ganglion. The presence of MIH protein within such a diversity of sites in the CNS, and external to the XOSG, raises new questions concerning the established mode of MIH action
    corecore