7 research outputs found

    Effects of Spirulina platensis microalgae on antioxidant and anti-inflammatory factors in diabetic rats

    No full text
    Fariba Nasirian,1 Masoumeh Dadkhah,2 Nasrollah Moradi-kor,3,4 Zia Obeidavi5 1Department of Animal Sciences, University of Birjand, Birjand, Iran; 2Research Centers Development and Coordination Office, Deputy of Research & Technology, Ardabil University of Medical Sciences, Ardabil, Iran; 3Research Centre of Physiology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran; 4Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran; 5Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran Objectives: Lipid peroxidation and hyperglycemia are common signs for diabetes. Natural antioxidants such as Spirulina platensis microalgae (SPM) may prevent lipid peroxidation and hyperglycemia. This study aimed to evaluate the effects of SPM on antioxidant and anti-inflammatory in diabetic rats. Materials and methods: Sixty-four rats were divided into eight groups (n=8) and orally treated with 0, 10, 20 and 30 mg/kg body weight of SPM extract. Experimental groups included diabetic rats fed with 0 (DC), 10, 20 and 30 mg/kg SPM. Healthy rats were treated with 0 mg/kg SPM (HC), 10 mg/kg SPM, 20 mg/kg SPM and 30 mg/kg SPM. At the end of the trial, blood samples were collected and the plasma concentrations of trace minerals (TMs), biochemical parameters, and antioxidant enzymes in liver were evaluated. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), TNF-α (tumor necrosis factor-alpha) and IL-6 (interleukin-6) were evaluated. Results: Our findings showed that diabetes significantly lowered the plasma concentration of TMs and antioxidant enzymes in liver and also increased the levels of malondialdehyde, glucose, lipid profile, AST, ALT, TNF-α and IL-6 (DC vs HC). However, an oral supplement of SPM (20 and 30 mg/kg body weight) lowered levels of malondialdehyde level, glucose, lipid parameters, AST, ALT, TNF-α and IL-6. The same levels increased the plasma contents of zinc, iron, copper and selenium and activity of antioxidant enzymes (P<0.05). Conclusion: It can be concluded that diabetes decreases TM concentration and antioxidant enzymes and also increases lipid profile, glucose, AST, ALT, TNF-α and IL-6 concentrations. Inclusion of SPM supplementing (20 and 30 mg/kg body weight) increased some TMs and antioxidant enzymes. SPM may provide TMs for synthesis of antioxidant enzymes which subsequently reduce lipid profile, glucose concentration and anti-inflammatory responses. Keywords: antioxidant enzymes, diabetes, lipid profile, plasma selenium, Spirulina platensi

    The beneficial effects of metformin on cancer prevention and therapy: a comprehensive review of recent advances

    No full text
    Pouya Saraei,1 Ilia Asadi,1 Muhammad Azam Kakar,2 Nasroallah Moradi-Kor1,31Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran; 2Director Planning and Development, L&DD Department, Quetta, Balochistan, Pakistan; 3Research Center of Physiology, Semnan University of Medical Sciences, Semnan, IranAbstract: Metformin is a widely used drug in today’s prescriptions by physicians due to its specific effects in treating and curing type II diabetes. Diabetes is a common disease that may occur throughout human life, and can increase the likelihood of the occurrence of various types of cancer, such as colon, rectum, pancreas and liver cancers, compared to non-diabetic patients. Metformin inhibits mTOR activity by activating ATM (ataxia telangiectasia mutated) and LKB1 (liver kinase B1) and then adenosine monophosphate-activated kinase(AMPK), and thus prevents protein synthesis and cell growth. Metformin can activate p53 by activatingAMPK and thereby ultimately stop the cell cycle. Given the potential of metformin in the treatment of cancer, it can be used in radiotherapy, chemotherapy and to improve the response to treatment inandrogen derivatives (ADT), and also, according to available evidence, metformin can also be used to prevent various types of cancers. Generally, metformin can: 1) reduce the incidence of cancers, 2) reduce the mortality from cancers, 3) increase the response to treatment in cancer cells when using radiotherapy and chemotherapy, 4) optimize tumor movement and reduce the malignancy, 5) reduce the likelihood of relapse, and 6) reduce the damaging effects of ADT. Therefore, this drug can be used as a complementary therapeutic agent for cancer treatment and prevention. In this review, we have summarized the data from various experimental and clinical studies and highlight the possible potential effects of metformin on cancer therapeutic responses.Keywords: metformin, AMPK pathway, mTOR pathway, LKB1, radiation, prevention and treatment of cance

    GABAB receptor activation ameliorates spatial memory impairments in stress-exposed rats

    No full text
    Hedayat Sahraei,1 Majid Askaripour,1 Khadijeh Esmaeilpour,2 Fatemeh Shahsavari,3 Soodeh Rajabi,4 Nasroallah Moradi-Kor51Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran; 2Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; 3Department of Biology, Faculty of Science, Shahid Bahonar University, Kerman, Iran; 4Physiology Research Center and Department of Physiology, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran; 5Research Center of Physiology, Semnan University of Medical Sciences, Semnan, IranObjective: Due to the prevalence of stress in modern life and its impact on spatial memory, the role of inhibitory systems in brain areas such as the nucleus accumbens (NAc) in reducing stress is important. The current study aimed to examine the response of NAc shell GABAB receptors to stress and the role of intraperitoneally (i.p.) and intra-NAc injection of the GABAB receptor agonist baclofen on spatial memory impairments in stress-exposed rats.Methods: Eighty adult male Wistar rats were randomly divided into ten groups (n=8): two were control groups for intra-NAc and i.p baclofen; two groups were subjected to stress and injected with saline (baclofen vehicle); three groups were given baclofen (1, 5, and 10 μg/rat) intra-NAc 5 mins before stress was induced; and three groups received baclofen (1, 5, and 10 mg/kg/i.p.) 30 mins before being subjected to stress. Foot-shock stress was applied for 7 consecutive days. Behavioral assays using the Barnes maze were performed 24 hrs after the last baclofen injection.Results: Both the intra-NAc and the i.p administration of baclofen dose-dependently reduced escape latency and total distance and increased velocity in the treatment groups in the training trials. In the probe test, the rats that had received 5 mg/kg of baclofen had the highest target frequency, but there no significant differences were observed in velocity, duration, or distance to the target between the groups.Conclusion: According to the findings, baclofen can dose-dependently improve spatial memory, and GABAB receptor in the NAc plays an important role in spatial memory.Keywords: baclofen, spatial memory, nucleus accumbens, stress, male ra
    corecore