28 research outputs found

    Studies of genotoxicity and apoptosis using human lymphocytes or murine neuroblastoma cells exposed in vitro to radiofrequency fields characteristic of mobile phones

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.The aim of the study was to investigate whether non-thermal levels of radiofrequency (RF) fields, characteristic of some mobile phones, might be directly genotoxic when applied in vitro to unstimulated G0 or stimulated human lymphocytes. Also, the study aimed to investigate the possibility that RF fields might act epipigenetically when combined with x-rays, by modifying their effect when applied in vitro to G0 lymphocytes. In addition, the possibility of RF fields inducing apoptosis in murine neuroblastoma (N2a) cells was also examined. G0 lymphocytes from 4 donors were exposed for a total of 24 h to a continuous or an intermittent RF signal. The signals were 935 MHz GSM (Global System for Mobile Communication) Basic, 1800 MHz GSM Basic, 935 MHz continuous wave (CW) carrier frequency, and 935 MHz GSM Talk. Stimulated lymphocytes were exposed for a total of 48 h to intermittent 1800 MHz RF signals that were GSM Basic or the carrier frequency only. The RF fields used for the 24 h exposure of N2a cells were all at 935 MHz and consisted of GSM Basic, GSM Talk and a CW signal. The chosen Specific energy Absorption values of the signals were either 1 or 2 W/kg. These values are near the upper limit of actual energy absorbed in localised tissue by a person from some mobile phones. The field was applied to G0 human lymphocytes either alone or combined with an exposure to 1 Gy x-rays given immediately before or after the RF field. A dose of 4 Gy x-rays was used as a positive control for apoptosis induction in N2a cells and in the study with stimulated lymphocytes no x-rays were used. The lymphocytes were assayed by several standard methods to demonstrate genotoxicity. Unstable chromosome aberrations (stimulated lymphocytes and those exposed in G0), sister chromatid exchanges (SCE) and cytokinesis blocked micronuclei (MN) (lymphocytes exposed in G0). In addition the SCE and MN assays allowed nuclear division indices (NDI) to be calculated as NDI defines the cell cycle progression of lymphocytes after PHA stimulation and how this might be affected by RF exposure. N2a cells were assessed by fluorescence microscopy for levels of apoptosis at a number of time points post RF field or x-ray exposure, between 0 and 48 h. Three independent assays that detect different stages of the apoptotic pathway were used, the Annexin V binding, caspase activation and in situ end labelling. By comparison with appropriate sham exposed samples no effect of RF fields alone could be found in G0 or PHA stimulated lymphocytes exposed in vitro. Also, RF fields did not modify any measured effects of x-rays either given before or after RF exposure. No statistically significant difference in apoptosis levels were observed between RF exposed and sham exposed N2a cells in either a proliferating or differentiated state for any assay at any time point post exposure

    The second gamma-H2AX assay inter-comparison exercise carried out in the framework of the European biodosimetry network (RENEB)

    Get PDF
    Purpose: Within the EU RENEB project, seven laboratories have taken part in training and harmonisation activities to strengthen triage gamma H2AX-based radiation exposure assessment. This has culminated in a second triage biodosimetry exercise. Materials and methods: Whole blood and separated lymphocyte samples were homogenously irradiated with 60Co gamma rays at 0.5, 2.5 (blind samples), 0 and 2 Gy (reference samples). Following post-exposure incubations of 4 and 24 h, 16 samples were shipped on ice packs to each partner. The samples were stained and scored for gamma-H2AX foci, using manual and/or automated fluorescence microscope scoring strategies. Dose estimates were obtained and used to assign triage categories to the samples. Results: Average dose estimates across all the laboratories correlated well with true doses. The most accurate assignment of triage category was achieved by manual scoring of the 4-h blood and lymphocyte samples. Only three samples out of a total of 46 were miscategorized in a way that could have adversely effected the clinical management of a radiation casualty. Conclusions: This inter-comparison exercise has demonstrated that following a recent acute radiation exposure, the gamma-H2AX assay could be a useful triage tool that can be successfully applied across a network of laboratories

    Integration of new biological and physical retrospective dosimetry methods into EU emergency response plans - joint RENEB and EURADOS inter-laboratory comparisons

    Get PDF
    Purpose: RENEB, ‘Realising the European Network of Biodosimetry and Physical Retrospective Dosimetry,’ is a network for research and emergency response mutual assistance in biodosimetry within the EU. Within this extremely active network, a number of new dosimetry methods have recently been proposed or developed. There is a requirement to test and/or validate these candidate techniques and inter-comparison exercises are a well-established method for such validation. Materials and methods: The authors present details of inter-comparisons of four such new methods: dicentric chromosome analysis including telomere and centromere staining; the gene expression assay carried out in whole blood; Raman spectroscopy on blood lymphocytes, and detection of radiation-induced thermoluminescent signals in glass screens taken from mobile phones. Results: In general the results show good agreement between the laboratories and methods within the expected levels of uncertainty, and thus demonstrate that there is a lot of potential for each of the candidate techniques. Conclusions: Further work is required before the new methods can be included within the suite of reliable dosimetry methods for use by RENEB partners and others in routine and emergency response scenarios.VII Programa Marco de Investigación y Desarrollo (VIIPM) de la Unión Europea. nº 295513European Radiation Dosimetry Group (EURADOS) de la Unión Europea. EURADOS WG1

    RENEB accident simulation exercise

    Get PDF
    Purpose: The RENEB accident exercise was carried out in order to train the RENEB participants in coordinating and managing potentially large data sets that would be generated in case of a major radiological event. Materials and methods: Each participant was offered the possibility to activate the network by sending an alerting email about a simulated radiation emergency. The same participant had to collect, compile and report capacity, triage categorization and exposure scenario results obtained from all other participants. The exercise was performed over 27 weeks and involved the network consisting of 28 institutes: 21 RENEB members, four candidates and three non-RENEB partners. Results: The duration of a single exercise never exceeded 10 days, while the response from the assisting laboratories never came later than within half a day. During each week of the exercise, around 4500 samples were reported by all service laboratories (SL) to be examined and 54 scenarios were coherently estimated by all laboratories (the standard deviation from the mean of all SL answers for a given scenario category and a set of data was not larger than 3 patient codes). Conclusions: Each participant received training in both the role of a reference laboratory (activating the network) and of a service laboratory (responding to an activation request). The procedures in the case of radiological event were successfully established and tested

    RENEB intercomparison exercises analyzing micronuclei (Cytokinesis-block Micronucleus Assay)

    Get PDF
    Purpose: In the framework of the ‘Realizing the European Network of Biodosimetry’ (RENEB) project, two intercomparison exercises were conducted to assess the suitability of an optimized version of the cytokinesis-block micronucleus assay, and to evaluate the capacity of a large laboratory network performing biodosimetry for radiation emergency triages. Twelve European institutions participated in the first exercise, and four non-RENEB labs were added in the second one. Materials and methods: Irradiated blood samples were shipped to participating labs, whose task was to culture these samples and provide a blind dose estimate. Micronucleus analysis was performed by automated, semi-automated and manual procedures. Results: The dose estimates provided by network laboratories were in good agreement with true administered doses. The most accurate estimates were reported for low dose points (== 2.7 Gy) a larger variation in estimates was observed, though in the second exercise the number of acceptable estimates increased satisfactorily. Higher accuracy was achieved with the semi-automated method. Conclusion: The results of the two exercises performed by our network demonstrate that the micronucleus assay is a useful tool for large-scale radiation emergencies, and can be successfully implemented within a large network of laboratories

    RENEB intercomparisons applying the conventional Dicentric Chromosome Assay (DCA)

    Get PDF
    Purpose: Two quality controlled inter-laboratory exercises were organized within the EU project ‘Realizing the European Network of Biodosimetry (RENEB)’ to further optimize the dicentric chromosome assay (DCA) and to identify needs for training and harmonization activities within the RENEB network. Materials and methods: The general study design included blood shipment, sample processing, analysis of chromosome aberrations and radiation dose assessment. After manual scoring of dicentric chromosomes in different cell numbers dose estimations and corresponding 95% confidence intervals were submitted by the participants. Results: The shipment of blood samples to the partners in the European Community (EU) were performed successfully. Outside the EU unacceptable delays occurred. The results of the dose estimation demonstrate a very successful classification of the blood samples in medically relevant groups. In comparison to the 1st exercise the 2nd intercomparison showed an improvement in the accuracy of dose estimations especially for the high dose point. Conclusions: In case of a large-scale radiological incident, the pooling of ressources by networks can enhance the rapid classification of individuals in medically relevant treatment groups based on the DCA. The performance of the RENEB network as a whole has clearly benefited from harmonization processes and specific training activities for the network partners

    Integration of new biological and physical retrospective dosimetry methods into EU emergency response plans : joint RENEB and EURADOS inter-laboratory comparisons

    Get PDF
    Purpose: RENEB, 'Realising the European Network of Biodosimetry and Physical Retrospective Dosimetry,' is a network for research and emergency response mutual assistance in biodosimetry within the EU. Within this extremely active network, a number of new dosimetry methods have recently been proposed or developed. There is a requirement to test and/or validate these candidate techniques and inter-comparison exercises are a well-established method for such validation. Materials and methods: The authors present details of inter-comparisons of four such new methods: dicentric chromosome analysis including telomere and centromere staining; the gene expression assay carried out in whole blood; Raman spectroscopy on blood lymphocytes, and detection of radiation induced thermoluminescent signals in glass screens taken from mobile phones. Results: In general the results show good agreement between the laboratories and methods within the expected levels of uncertainty, and thus demonstrate that there is a lot of potential for each of the candidate techniques. Conclusions: Further work is required before the new methods can be included within the suite of reliable dosimetry methods for use by RENEB partners and others in routine and emergency response scenarios

    Investigation of the influence of calibration practices on cytogenetic laboratory performance for dose estimation

    No full text
    Purpose: In the frame of the QA program of RENEB, an inter-laboratory comparison (ILC) of calibration sources used in biological dosimetry was achieved to investigate the influence of calibration practices and protocols on the results of the dose estimation performance as a first step to harmonization and standardization of dosimetry and irradiation practices in the European biological dosimetry network. Materials and methods: Delivered doses by irradiation facilities used by RENEB partners were determined with EPR/alanine dosimetry system. Dosimeters were irradiated in the same conditions as blood samples. A short survey was also performed to collect the information needed for the data analysis and evaluate the diversity of practices. Results: For most of partners the deviation of delivered dose from the targeted dose remains below 10%. Deviations larger than 10% were observed for five facilities out of 21. Origins of the largest discrepancies were identified. Correction actions were evaluated as satisfactory. The re-evaluation of some ILC results for the fluorescence in situ hybridization (FISH) and premature chromosome condensation (PCC) assays has been performed leading to an improvement of the overall performances. Conclusions: This work has shown the importance of dosimetry in radiobiology studies and the needs of harmonization, standardization in irradiation and dosimetry practices and educational training for biologists using ionizing radiation

    RENEB Inter-Laboratory Comparison 2021: The Dicentric Chromosome Assay

    No full text
    After large-scale radiation accidents where many individuals are suspected to be exposed to ionizing radiation, biological and physical retrospective dosimetry assays are important tools to aid clinical decision making by categorizing individuals into unexposed/minimally, moderately or highly exposed groups. Quality-controlled inter-laboratory comparisons of simulated accident scenarios are regularly performed in the frame of the European legal association RENEB (Running the European Network of Biological and Physical retrospective Dosimetry) to optimize international networking and emergency readiness in case of large-scale radiation events. In total 33 laboratories from 22 countries around the world participated in the current RENEB inter-laboratory comparison 2021 for the dicentric chromosome assay. Blood was irradiated in vitro with X rays (240 kVp, 13 mA,;75 keV, 1 Gy/min) to simulate an acute, homogeneous whole-body exposure. Three blood samples (no. 1: 0 Gy, no. 2: 1.2 Gy, no. 3: 3.5 Gy) were sent to each participant and the task was to culture samples, to prepare slides and to assess radiation doses based on the observed dicentric yields from 50 manually or 150 semi-automatically scored metaphases (triage mode scoring). Approximately two-thirds of the participants applied calibration curves from irradiations with c rays and about 1/3 from irradiations with X rays with varying energies. The categorization of the samples in clinically relevant groups corresponding to individuals that were unexposed/minimally (0–1 Gy), moderately (1–2 Gy) or highly exposed (.2 Gy) was successfully performed by all participants for sample no. 1 and no. 3 and by ≥74% for sample no. 2. However, while most participants estimated a dose of exactly 0 Gy for the sham-irradiated sample, the precise dose estimates of the samples irradiated with doses .0 Gy were systematically higher than the corresponding reference doses and showed a median deviation of 0.5 Gy (sample no. 2) and 0.95 Gy (sample no. 3) for manual scoring. By converting doses estimated based on c-ray calibration curves to X-ray doses of a comparable mean photon energy as used in this exercise, the median deviation decreased to 0.27 Gy (sample no. 2) and 0.6 Gy (sample no. 3). The main aim of biological dosimetry in the case of a large-scale event is the categorization of individuals into clinically relevant groups, to aid clinical decision making. This task was successfully performed by all participants for the 0 Gy and 3.5 Gy samples and by 74% (manual scoring) and 80% (semiautomatic scoring) for the 1.2 Gy sample. Due to the accuracy of the dicentric chromosome assay and the high number of participating laboratories, a systematic shift of the dose estimates could be revealed. Differences in radiation quality (X ray vs. c ray) between the test samples and the applied dose effect curves can partly explain the systematic shift. There might be several additional reasons for the observed bias (e.g., donor effects, transport, experimental conditions or the irradiation setup) and the analysis of these reasons provides great opportunities for future research. The participation of laboratories from countries around the world gave the opportunity to compare the results on an international level
    corecore