70 research outputs found

    Role of Biofilm in Rainwater Tank

    Get PDF
    In order to establish the role of biofilm in rainwater tank, it was investigated the phylogenetic distribution of the bacteria present in an operating rainwater tank. Most of the bacteria were closely related to fresh water, soil, and biofilm bacteria found in natural environments. The high proportion of proteobacteria indicates the generally clean oligotrophic nature of the tank water. To better understand the environmental conditions in rainwater tanks and the development of biofilms therein, the changes in biofilm cells and the bacterial community were investigated during biofilm development. We confirmed that the biofilm development process takes place in three stages: an initial stage characterized by the colonization of different populations, an intermediate stage characterized by a limited number of dominant populations utilizing similar resources, and a late/mature stage characterized by mature biofilms of a complex spatial structure. It was investigated microbial behaviour after inoculation of the bacterium, Pseudomonas aeruginosa, in pilot and full-scale rainwater tanks with different surface-to-volume (S/V) ratios. Ninety-nine percentage of the inoculated P. aeruginosa had been removed from the water phase. The faster removal rate in pilot and full-scale tank was due to its higher S/V ratio. From the results, several recommendations for tank design and management were suggested

    Hydrological Design of Multipurpose Micro-catchment Rainwater Management

    Get PDF
    Rainwater as a resource has been underrated due to scientific misunderstandings about its quality, the lack of hydrologic design tools for small catchments, such as roofs, the preference for large infrastructures, and the small number of successful cases reported. This book summarizes 17 years of scientific research, operational monitoring, and practical demonstration projects made at Seoul National University Rainwater Research Center. A new paradigm of rainwater is proposed, which is to collect rainwater and use it, instead of draining it. Based on conventional hydrology and methodology, a hydrologic modelling method for micro-catchment is suggested. By incorporating several controllable measures into the design, the system can solve several water-related problems such as flooding, water conservation, emergency water storage, and groundwater recharge. Now is the time to adapt. Many good examples are reported from around the world, including South Korea. Fifty-nine South Korean cities have announced regulations and commitment to become ‘Rain Cities’ by offering financial incentives to rainwater management systems or subsidizing them. This book is written to give hope to those who seek to transform their community from a ‘Drain City’ to a ‘Rain City’. It has been prepared to clear the ambiguity about rainwater management and transform the experts as well as the citizens to become active proponents of rainwater. This book can be a guide to transform the world into Rain Cities, and become a viable solution toward Sustainable Development Goal Number 6

    Computational modeling of the effects of autophagy on amyloid-β peptide levels

    Get PDF
    Autophagy is an evolutionarily conserved intracellular process that is used for delivering proteins and organelles to the lysosome for degradation. For decades, autophagy has been speculated to regulate amyloid-β peptide (Aβ) accumulation, which is involved in Alzheimers disease (AD); however, specific autophagic effects on the Aβ kinetics only have begun to be explored. We develop a mathematical model for autophagy with respect to Aβ kinetics and perform simulations to understand the quantitative relationship between Aβ levels and autophagy activity. In the case of an abnormal increase in the Aβ generation, the degradation, secretion, and clearance rates of Aβ are significantly changed, leading to increased levels of Aβ. When the autophagic Aβ degradation is defective in addition to the increased Aβ generation, the Aβ-regulation failure is accompanied by elevated concentrations of autophagosome and autolysosome, which may further clog neurons. The model predicts that modulations of different steps of the autophagy pathway (i.e., Aβ sequestration, autophagosome maturation, and intralysosomal hydrolysis) have significant step-specific and combined effects on the Aβ levels and thus suggests therapeutic and preventive implications of autophagy in AD.K.H. acknowledges support by the Intramural Research Program of the NIH, National Heart, Lung and Blood Institute. K.H. was supported in part by a grant from the KRIBB Research Initiative Program (Korean Biomedical Scientist Fellowship Program), Korea Research Institute of Bioscience and Biotechnology, Republic of Korea. MYC acknowledges support from the National Research Foundation of Korea through the Basic Science Research Program (Grant No. 2019R1F1A1046285)

    Nomograms for Prediction of Disease Recurrence in Patients with Primary Ta, T1 Transitional Cell Carcinoma of the Bladder

    Get PDF
    We developed nomograms to predict disease recurrence in patients with Ta, T1 transitional cell carcinoma of the bladder. Thirty-eight training hospitals participated in this retrospective multicenter study. Between 1998 and 2002, a total of 1,587 patients with newly diagnosed non-muscle invasive bladder cancer were enrolled in this study. Patients with prior histories of bladder cancer, non-transitional cell carcinoma, or a follow-up duration of less than 12 months were excluded. With univariate and multivariate logistic regression analyses, we constructed nomograms to predict disease recurrence, and internal validation was performed using statistical techniques. Three-year and five-year recurrence-free rates were 64.3% and 55.3%, respectively. Multivariate analysis revealed that age (hazard ratio [HR]=1.437, p<0.001), tumor size (HR=1.328, p=0.001), multiplicity (HR=1.505, p<0.001), tumor grade (HR=1.347, p=0.007), concomitant carcinoma in situ (HR=1.611, p=0.007), and intravesical therapy (HR=0.681, p<0.001) were independent predictors for disease recurrence. Based on these prognostic factors, nomograms for the prediction of disease recurrence were developed. These nomograms can be used to predict the probability of disease recurrence in patients with newly diagnosed Ta, T1 transitional cell carcinoma of the bladder. They may be useful for patient counseling, clinical trial design, and patient follow-up planning

    Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis

    Get PDF
    New therapeutic strategies are needed to combat the tuberculosis pandemic and the spread of multidrug-resistant (MDR) and extensively drug-resistant (XDR) forms of the disease, which remain a serious public health challenge worldwide1, 2. The most urgent clinical need is to discover potent agents capable of reducing the duration of MDR and XDR tuberculosis therapy with a success rate comparable to that of current therapies for drug-susceptible tuberculosis. The last decade has seen the discovery of new agent classes for the management of tuberculosis3, 4, 5, several of which are currently in clinical trials6, 7, 8. However, given the high attrition rate of drug candidates during clinical development and the emergence of drug resistance, the discovery of additional clinical candidates is clearly needed. Here, we report on a promising class of imidazopyridine amide (IPA) compounds that block Mycobacterium tuberculosis growth by targeting the respiratory cytochrome bc1 complex. The optimized IPA compound Q203 inhibited the growth of MDR and XDR M. tuberculosis clinical isolates in culture broth medium in the low nanomolar range and was efficacious in a mouse model of tuberculosis at a dose less than 1 mg per kg body weight, which highlights the potency of this compound. In addition, Q203 displays pharmacokinetic and safety profiles compatible with once-daily dosing. Together, our data indicate that Q203 is a promising new clinical candidate for the treatment of tuberculosis

    Hydrological Design of Multipurpose Micro-catchment Rainwater Management

    Get PDF
    Rainwater as a resource has been underrated due to scientific misunderstandings about its quality, the lack of hydrologic design tools for small catchments, such as roofs, the preference for large infrastructures, and the small number of successful cases reported. This book summarizes 17 years of scientific research, operational monitoring, and practical demonstration projects made at Seoul National University Rainwater Research Center. A new paradigm of rainwater is proposed, which is to collect rainwater and use it, instead of draining it. Based on conventional hydrology and methodology, a hydrologic modelling method for micro-catchment is suggested. By incorporating several controllable measures into the design, the system can solve several water-related problems such as flooding, water conservation, emergency water storage, and groundwater recharge. Now is the time to adapt. Many good examples are reported from around the world, including South Korea. Fifty-nine South Korean cities have announced regulations and commitment to become ‘Rain Cities’ by offering financial incentives to rainwater management systems or subsidizing them. This book is written to give hope to those who seek to transform their community from a ‘Drain City’ to a ‘Rain City’. It has been prepared to clear the ambiguity about rainwater management and transform the experts as well as the citizens to become active proponents of rainwater. This book can be a guide to transform the world into Rain Cities, and become a viable solution toward Sustainable Development Goal Number 6

    Modeling of DAF: the effect of particle and bubble characteristics

    No full text

    Autophagy mediates phase transitions from cell death to life

    No full text
    Autophagy is a lysosomal degradation pathway, which is critical for maintaining normal cellular functions. Despite considerable advances in defining the specific molecular mechanism governing the autophagy pathway during the last decades, we are still far from understanding the underlying principle of the autophagy machinery and its complex role in human disease. As an alternative attempt to reinvigorate the search for the principle of the autophagy pathway, we in this study make use of the computer-aided analysis, complementing current molecular-level studies of autophagy. Specifically, we propose a hypothesis that autophagy mediates cellular phase transitions and demonstrate that the autophagic phase transitions are essential to the maintenance of normal cellular functions and critical in the fate of a cell, i.e., cell death or survival. This study should provide valuable insight into how interactions of sub-cellular components such as genes and protein modules/complexes regulate autophagy and then impact on the dynamic behaviors of living cells as a whole, bridging the microscopic molecular-level studies and the macroscopic cellular-level and physiological approaches

    Fate of Fecal Indicators in Resource-Oriented Sanitation Systems Using Nitrifying Bio-Treatment

    No full text
    Hygienic fecal treatment in resource-oriented sanitation (ROS) systems is an important concern. Although the addition of nitrifying microorganisms is a sustainable fecal treatment method in ROS systems, it is essential to examine the cleanliness of this method. In this study, we investigated the fate of fecal indicators in source-separated fecal samples through tracking Escherichia coli and total coliforms. The effects of adding different amounts of Nitrosomonas europaea bio-seed, along with a constant amount of Nitrobacter winogradskyi bio-seed, were studied. In intact feces samples, the pathogen population underwent an initial increase, followed by a slight decrease, and eventually became constant. Although the addition of nitrifying microorganisms initially enhanced the pathogen growth rate, it caused the reduction process to become more efficient in the long-term. In addition to a constant concentration of 10,000 cells of N. winogradskyi per 1 g feces, a minimum amount of 3000 and 7000 cells of N. europaea per 1 g feces could completely remove E. coli and total coliforms, respectively, in less than 25 days. Increasing the amount of bio-seeds added can further reduce the time required for total pathogen removal
    corecore