1,943 research outputs found

    Josephson junction array type I-V characteristics of quench-condensed ultra thin films of Bi

    Full text link
    In this communication we report studies of d.c current-voltage (I-V) characteristics of ultra thin films of Bi, quench condensed on single crystal sapphire substrates at T = 15K. The hysteretic I-V characteristics are explained using a resistively and capacitively shunted junction (RCSJ) model of Josephson junction arrays. The Josephson coupling energy(EJE_J) and the charging energy(EcE_c) are calculated for different thickness(dd) values. A low resistance state is found in the low current regime below the critical current, IcI_c. This resistance R0R_0 is found to have a minimum at a particular thickness (dcd_c) value. Reflection High Energy Electron Diffraction (RHEED) studies are done on these films. A distinct appearance of a diffuse ring near dcd_c is observed in the diffraction images, consistent with the recent STM studies(Ekinci and Valles, PRL {\bf 82}(1999) 1518). These films show an irreversible annealing when temperature is increased. The annealing temperature (TaT_a) also has a maximum at the same thickness. Althoguh the Rs_s vs T of quench condensed Bi films suggest that the films are uniform, our results indicate that even in thick films, the order parameter is not fully developed over the complete area of the film. These results are discussed qualitatively.Comment: 6 pages, 6 figure

    The rotation curves of dwarf galaxies: a problem for Cold Dark Matter?

    Full text link
    We address the issue of accuracy in recovering density profiles from observations of rotation curves of galaxies. We ``observe'' and analyze our models in much the same way as observers do the real galaxies. We find that the tilted ring model analysis produces an underestimate of the central rotational velocity. In some cases the galaxy halo density profile seems to have a flat core, while in reality it does not. We identify three effects, which explain the systematic biases: (1) inclination (2), small bulge, and (3) bar. The presence of even a small non-rotating bulge component reduces the rotation velocity. In the case of a disk with a bar, the underestimate of the circular velocity is larger due to a combination of non-circular motions and random velocities. Signatures of bars can be difficult to detect in the surface brightness profiles of the model galaxies. The variation of inclination angle and isophote position angle with radius are more reliable indicators of bar presence than the surface brightness profiles. The systematic biases in the central ~ 1 kpc of galaxies are not large. Each effect separately gives typically a few kms error, but the effects add up. In some cases the error in circular velocity was a factor of two, but typically we get about 20 percent. The result is the false inference that the density profile of the halo flattens in the central parts. Our observations of real galaxies show that for a large fraction of galaxies the velocity of gas rotation (as measured by emission lines) is very close to the rotation of stellar component (as measured by absorption lines). This implies that the systematic effects discussed in this paper are also applicable both for the stars and emission-line gas.Comment: ApJ, in press, 30 pages, Latex, 21 .eps figure

    Crowdsourcing EO datasets to improve cloud detection algorithms and land cover change

    Get PDF
    Involving citizens in science is gaining considerable traction of late. With positive examples (e.g. Geo-Wiki, FotoQuest Austria), a number of projects are exploring the options to engage the public in contributing to scientific research, often by asking participants to collect some data or validate some results. The International Institute for Applied Systems Analysis (IIASA), with extensive experience in crowdsourcing and gamification, has joined Sinergise, Copernicus Masters 2016 winners, to engage the public in an initiative involving ESA’s Sentinel-2 satellite imagery. Sentinel-2 imagery offers high revisit times and sufficient resolution for land change detection applications. Unfortunately, simple (but fast) algorithms often fail due to many false-positives: changes in clouds are perceived as land changes. The ability to discriminate of cloudy pixels is thus crucial for any automatic or semi-automatic solutions that detect land change. A plethora of algorithms to distinguish clouds in Sentinel-2 data are available. However, there is a need for better data on where and when clouds occur to help improve these algorithms. To overcome this current gap in the data, we are engaging the public in this task. Using a number of tools, developed at IIASA, and Sentinel Hub services, which provide fast access to the entire global archive of Sentinel-2 data, the aim is to obtain a large data resource of curated cloud classifications. The resulting dataset will be published as open data and made available through Geopedia platform. The gamified process will start by asking users if there are clouds on a small image (e.g. 8x8 pixels at the highest Sentinel-2 resolution of 10 m/px), which will provide us with a screening process to pinpoint cloudy areas, employing Picture Pile crowdsourcing game from IIASA. The next step will involve a more detailed workflow, as users will get a slightly larger image (e.g. 64x64 pixels) and will then be asked to delineate different types of clouds: opaque clouds (nothing is seen through the clouds), thick clouds (where the surface is still discernible through the clouds), and thin clouds (where the surface is unequivocally covered by a cloud); the rest of the image will be implicitly cloud-free. The resulting data will be made available through the Geopedia portal, both for exploring and downloading. This paper will demonstrate this process and show some results from a crowdsourcing campaign. The approach will also allow us to collect other datasets in a rapid and efficient manner. For example, using a slightly modified configuration, a similar workflow could be used to obtain a manually curated land cover classification data set, which could be used as training data for machine learning algorithms

    Heterogeneity in pre-monsoon aerosol types over the Arabian Sea deduced from ship-borne measurements of spectral AODs

    Get PDF
    Ship-borne sunphotometer measurements obtained in the Arabian Sea (AS) in the pre-monsoon season (18 April–10 May 2006) during a cruise campaign (ICARB) have been used to retrieve the Aerosol Optical Depth (AOD; τ) and the Ångström wavelength exponent (α). The continents surrounding the AS produce natural and anthropogenic aerosols that have distinctive influences on α and its spectral distribution. The α values were estimated by means of the least-squares method over the spectral bands 340–1020 nm and 340–870 nm. The spectral distribution of AOD in logarithmic co-ordinates could be fit using a 2nd order polynomial with higher accuracy in the wavelength band 340–1020 nm than in the 340–870 nm band. A polynomial fit analytically parameterizes the observed wavelength dependencies of AOD with least errors in spectral variation of α and yields accurate estimates of the coefficients (<i>a</i><sub>1</sub> and <i>a</i><sub>2</sub>). The coarse-mode (positive curvature in the lnτ<sub>λ</sub> vs. lnλ) aerosols are mainly depicted in the Northern part of the AS closely associated with the nearby arid areas while fine-mode aerosols are mainly observed over the far and coastal AS regions. In the study period the mean AOD at 500 nm is 0.25±0.11 and the α<sub>340-1020</sub> is 0.90±0.19. The α<sub>340-870</sub> exhibits similar values (0.92±0.18), while significant differences revealed for the constant terms of the polynomial fit (<i>a</i><sub>1</sub> and <i>a</i><sub>2</sub>) proportionally to the wavelength band used for their determination. Observed day-to-day variability in the aerosol load and optical properties are direct consequence of the local winds and air-mass trajectories along with the position of the ship

    WHO consultation on Respiratory Syncytial Virus Vaccine Development Report from a World Health Organization Meeting held on 23-24 March 2015.

    Get PDF
    Respiratory syncytial virus (RSV) is a globally prevalent cause of lower respiratory infection in neonates and infants. Despite its disease burden, a safe and effective RSV vaccine has remained elusive. In recent years, improved understanding of RSV biology and innovations in immunogen design has resulted in the advancement of multiple vaccine candidates into the clinical development pipeline. Given the growing number of vaccines in clinical trials, the rapid pace at which they are being tested, and the likelihood that an RSV vaccine will reach the commercial market in the next 5-10 years, consensus and guidance on clinical development pathways and licensure routes are needed now, before large-scale efficacy trials commence. In pursuit of this aim, the World Health Organization convened the first RSV vaccine consultation in 15 years on the 23rd and 24th of March, 2015 in Geneva, Switzerland. The meeting's primary objective was to provide guidance on clinical endpoints and development pathways for vaccine trials with a focus on considerations of low- and middle-income countries. Meeting participants reached consensus on candidate case definitions for RSV disease, considerations for clinical efficacy endpoints, and the clinical development pathway for active and passive immunization trials in maternal and pediatric populations. The strategic focus of this meeting was on the development of high quality, safe and efficacious RSV preventive interventions for global use and included: (1) maternal/passive immunization to prevent RSV disease in infants less than 6 months; (2) pediatric immunization to prevent RSV disease in infants and young children once protection afforded by maternal immunization wanes

    WHO consultation on group B Streptococcus vaccine development: Report from a meeting held on 27-28 April 2016.

    Get PDF
    Globally, group B Streptococcus (GBS) remains a leading cause of sepsis and meningitis in infants in the first 90days of life. Intrapartum antibiotic prophylaxis (IAP) for women at increased risk of transmitting GBS to their newborns has been effective in reducing part, but not all, of the GBS disease burden in many high income countries (HICs). In low- and middle-income countries (LMICs), IAP use is low. Immunization of pregnant women with a GBS vaccine represents an alternative strategy to protecting newborns and young infants, through transplacental antibody transfer and potentially by reducing new vaginal colonization. This vaccination strategy was first suggested in the 1970s and several potential GBS vaccines have completed phase I/II clinical trials. During the 2015 WHO Product Development for Vaccines Advisory Committee meeting, GBS was identified as a high priority for the development of a vaccine for maternal immunization because of the major public health burden posed by GBS in LMICs, and the high technical feasibility for successful development. Following this meeting, the first WHO technical consultation on GBS vaccines was held on the 27th and 28th of April 2016, to consider development pathways for such vaccines, focused on their potential role in reducing newborn and young infant deaths and possibly stillbirths in LMICs. Discussion topics included: (1) pathophysiology of disease; (2) current gaps in the knowledge of global disease burden and serotype distribution; (3) vaccine candidates under development; (4) design considerations for phase III trials; and (5) pathways to licensure, policy recommendations and use. Efforts to address gaps identified in each of these areas are needed to establish the public health need for, the development and deployment of, efficacious GBS vaccines. In particular, more work is required to understand the global disease burden of GBS-associated stillbirths, and to develop quality-assured standardized antibody assays to identify correlates of protection

    Using Barkhausen Noise to Measure Coating Depth of Coated High-Speed Steel

    Get PDF
    Coated high-speed steel tools are widely used in machining processes as they offer an excellent tool life to cost ratio, but they quickly need replacing once the coated layer is worn away. It would be therefore useful to be able to measure the tool life remaining non-destructively and cheaply. To achieve this, the work presented here aims to measure the thickness of the coated layer of high-speed cutting tools by using Barkhausen noise (BHN) techniques. Coated high-speed steel specimens coated with two different materials (chromium nitride (CrN), titanium nitride (TiN)) were tested using a cost-effective measuring system developed for this study. Sensory features were extracted from the signal received from a pick-up coil and the signal features, Root mean square, peak count, and signal energy, were successfully correlated with the thickness of the coating layer on high-speed steel (HSS) specimens. The results suggest that the Barkhausen noise measuring system developed in this study can successfully indicate the different thickness of the coating layer on CrN/TiN coated HSS specimens

    Stellar populations of bulges at low redshift

    Full text link
    This chapter summarizes our current understanding of the stellar population properties of bulges and outlines important future research directions.Comment: Review article to appear in "Galactic Bulges", Editors: Laurikainen E., Peletier R., Gadotti D., Springer Publishing. 34 pages, 12 figure

    Churn, Baby, Churn: Strategic Dynamics Among Dominant and Fringe Firms in a Segmented Industry

    Get PDF
    This paper integrates and extends the literatures on industry evolution and dominant firms to develop a dynamic theory of dominant and fringe competitive interaction in a segmented industry. It argues that a dominant firm, seeing contraction of growth in its current segment(s), enters new segments in which it can exploit its technological strengths, but that are sufficiently distant to avoid cannibalization. The dominant firm acts as a low-cost Stackelberg leader, driving down prices and triggering a sales takeoff in the new segment. We identify a “churn” effect associated with dominant firm entry: fringe firms that precede the dominant firm into the segment tend to exit the segment, while new fringe firms enter, causing a net increase in the number of firms in the segment. As the segment matures and sales decline in the segment, the process repeats itself. We examine the predictions of the theory with a study of price, quantity, entry, and exit across 24 product classes in the desktop laser printer industry from 1984 to 1996. Using descriptive statistics, hazard rate models, and panel data methods, we find empirical support for the theoretical predictions
    corecore