
Atmos. Chem. Phys., 10, 4893–4908, 2010
www.atmos-chem-phys.net/10/4893/2010/
doi:10.5194/acp-10-4893-2010
© Author(s) 2010. CC Attribution 3.0 License.

Atmospheric
Chemistry

and Physics

Heterogeneity in pre-monsoon aerosol types over the Arabian Sea
deduced from ship-borne measurements of spectral AODs

D. G. Kaskaoutis1, M. C. R. Kalapureddy2, K. Krishna Moorthy 3, P. C. S. Devara2, P. T. Nastos4, P. G. Kosmopoulos4,
and H. D. Kambezidis1

1Atmospheric Research Team, Institute for Environmental Research and Sustainable Development, National Observatory of
Athens, Lofos Nymphon, P. O. Box 20048, 11810 Athens, Greece
2Physical Meteorology and Aerology Div., Indian Institute of Tropical Meteorology, Pashan, Pune 411008, India
3Space Physics Laboratory, Vikram Sarabhai Space Centre, Trivandrum 695022, India
4Department of Geology and Geoenvironment, University of Athens, University campus 15784 Athens, Greece

Received: 27 February 2009 – Published in Atmos. Chem. Phys. Discuss.: 21 October 2009
Revised: 29 April 2010 – Accepted: 10 May 2010 – Published: 26 May 2010

Abstract. Ship-borne sunphotometer measurements ob-
tained in the Arabian Sea (AS) in the pre-monsoon season
(18 April–10 May 2006) during a cruise campaign (ICARB)
have been used to retrieve the Aerosol Optical Depth (AOD;
τ) and theÅngstr̈om wavelength exponent (α). The conti-
nents surrounding the AS produce natural and anthropogenic
aerosols that have distinctive influences onα and its spectral
distribution. Theα values were estimated by means of the
least-squares method over the spectral bands 340–1020 nm
and 340–870 nm. The spectral distribution of AOD in log-
arithmic co-ordinates could be fit using a 2nd order poly-
nomial with higher accuracy in the wavelength band 340–
1020 nm than in the 340–870 nm band. A polynomial fit an-
alytically parameterizes the observed wavelength dependen-
cies of AOD with least errors in spectral variation ofα and
yields accurate estimates of the coefficients (a1 anda2). The
coarse-mode (positive curvature in the lnτλ vs. lnλ) aerosols
are mainly depicted in the Northern part of the AS closely as-
sociated with the nearby arid areas while fine-mode aerosols
are mainly observed over the far and coastal AS regions.
In the study period the mean AOD at 500 nm is 0.25±0.11
and theα340−1020 is 0.90±0.19. Theα340−870 exhibits simi-
lar values (0.92±0.18), while significant differences revealed
for the constant terms of the polynomial fit (a1 anda2) pro-
portionally to the wavelength band used for their determina-
tion. Observed day-to-day variability in the aerosol load and
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optical properties are direct consequence of the local winds
and air-mass trajectories along with the position of the ship.

1 Introduction

The characterization of aerosol particles and the spectral
dependence of their optical properties are very important
as they strongly influence the radiative properties (single-
scattering albedo, asymmetry factor, refractive index) in the
atmosphere (El-Metwally et al., 2008; Moorthy et al., 2009).
The Arabian Sea (AS) region has a unique weather pattern
because of the Indian monsoon and the associated winds that
reverse direction seasonally. It is a location where the pris-
tine air masses from the Southern Indian Ocean (IO) and the
polluted air from Asia meet during winter and spring season,
providing a very interesting area for aerosol studies (e.g., Ra-
manathan et al., 2001; Kalapureddy et al., 2009). Moreover,
the investigation of the aerosols over oceans is important
from the standpoint of understanding their anthropogenic and
natural impacts as well as in estimating their contribution
to radiative forcing (e.g., Haywood et al., 1999; Satheesh et
al., 2006a; Moorthy et al., 2009). However, the high spatio-
temporal variability and limited measurements of the aerosol
physical and optical properties over oceanic regions makes
it difficult to understand their impact on weather and hence
climate change (Smirnov et al., 2009). Due to these reasons
the oceanic regions surrounding India have always been the
subject of importance and investigating extensively through
various experimental campaigns.
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The aerosol load and spatial distribution in the AS re-
gion are highly variable due to airmass origin, local and re-
gional meteorology, El Nino – La Nina patterns, and loca-
tion of the ITCZ (e.g., Moorthy and Satheesh, 2000; Moor-
thy et al., 2001; Ramachandran and Jayaraman, 2002; Li and
Ramanathan, 2002). Several limited field experiments and
cruise campaigns (e.g., INDOEX, ARMEX, ICARB) found
large heterogeneity in the aerosol field, optical properties and
types over AS (e.g., Ramanathan et al., 2001; Moorthy et al.,
2005; Kalapureddy et al., 2009). Underlying it, higher AODs
and steeper gradients have been noticed over the northern
part of the AS which are mainly attributed to the advection
of mineral dust from west Asia causing a large effect on the
radiative forcing in the region (e.g., Satheesh et al., 2006a;
Moorthy et al., 2001). In contrast, larger sea-salt contribu-
tion to the AOD was found over the southern AS during the
summer monsoon season which is directly associated with
stronger sea-surface winds (Satheesh et al., 2006b).

The chemical species that contribute significantly to the
AODs over the AS have been shown to be sulfate, sea salt
and nitrate, potassium, organics, Black Carbon (BC), dust,
fly ash and ammonium (Savoie et al., 1987; Krishnamurti et
al., 1998; Nair et al., 2004; Kumar et al., 2008). However,
there is a seasonality to these distributions and large reduc-
tion in BC mass fraction over the AS region found from win-
ter to summer affects the seasonal radiative forcing (Babu et
al., 2004). In addition, several earlier estimates of the anthro-
pogenic contribution to mean AOD over the AS and northern
Indian Ocean ranged from 65% to>90% (Satheesh et al.,
1999; Ramachandran, 2004b). The total aerosol-mass con-
centration decreased from 80 µg m−3 near the Indian coast
to a few tenths of µg m−3 over the most distant oceanic re-
gions. The large increase in the small-particle concentration
near the coast was also consistent with the corresponding
large increase in the̊Angstr̈om exponent from 0.2 over the
Indian Ocean to 1.4 near the Indian coast (Krishnamurti et
al., 1998).

In the following years we might expect aerosol concentra-
tions in this region to increase in response to the rapid eco-
nomic development that is taking place in this region, espe-
cially in the Indian subcontinent. Therefore, there is a need
for continuous and systematic efforts to monitor aerosol con-
centrations and optical properties over this region since the
knowledge of their effects on the marine environment and in
our changing planet is a real challenge.

An Integrated Campaign for Aerosols, gases and Radiation
Budget (ICARB) (Moorthy et al., 2008) was conducted in the
pre-monsoon season of 2006 over the Bay of Bengal (BoB),
IO and AS. In the present study, we use the ICARB campaign
ocean segment data over AS during the pre-monsoon season
(April–May) of 2006 focusing on the AOD spectral variation
andÅngstr̈om exponent curvature, which can constitute the
basis for aerosol type discrimination over the area. Although
the AS has been extensively studied by several researchers,
achievements of the ICARB are unique in the sense that i) it

was performed during a different season (April–May) when
the synoptic winds are in transition from a continental type
air mass to a marine type, ii) none of the earlier cruises cov-
ered the western and northwestern parts of the AS (west
of ∼65◦ E), and iii) a latitudinally and longitudinally grid-
ded dataset of aerosol optical properties was collected over a
three-week period which has shown the large spatial hetero-
geneity over the AS in several aerosol parameters (including
AOD and its wavelength dependence). All these important
issues are addressed in the present work.

The results are examined against total and size-resolved
aerosol-mass concentration measured simultaneously in the
marine atmospheric boundary layer (MABL) and in the
whole atmospheric column. In addition, we also discuss
extensively the errors and uncertainties involved in the es-
timation of the curvature of the ln(AOD) vs. ln(λ) line over
oceanic regions, where the AOD is relatively low and spe-
cial attention was paid to calibrate the AOD values opposite
to previous works. The inclusion of two wavelength bands
for characterizing the aerosol optical properties reveals the
effects of the wavelength in the aerosol microphysical prop-
erties, which can be significant over oceanic regions with a
very heterogeneous aerosol field. These investigations are
the very first showing the spatial distribution of the AOD cur-
vature over the AS region.

2 Data collection

The whole set of oceanic segment measurements during the
ICARB was conducted onboard the Oceanographic Research
Vessel Sagar Kanya. AS region was covered in the second
leg (SK223B) of the campaign, which started from the port
of Kochi (on the west coast of India, Fig. 1) on 18 April
and ended after 24 days at Goa port (15.4◦ N, 73.8◦ E) on
11 May. It reached its farthest west point (14◦ N, 58◦ E) on
22 April and 3 May 2006. The track of the ship cruise was
designed in such a way that the maximum possible marine
regions in the AS were covered during the period of observa-
tions (see Fig. 1). The three AS regions shown in the figure
are i) coastal AS, less than 220 km from the coast, ii) mid
AS, between 220 and 550 km from the coast and, iii) far AS,
more than 550 km from the coast (Kalapureddy et al., 2009).
The points on the track show the daily position of the ship
at 05:30 UTC with the dates being identified beside with suf-
fix A for April and My for May. The intense field phase
of ICARB in the AS region covered the longitudinal sector
58◦ E–76◦ E with a latitudinal coverage from 8◦ N to 22◦ N.

High temporal resolution (∼10 min) observations of
direct-beam solar radiation were made using two (sun-
photometer and ozonometer) handheld Microtops-II (Solar
Light Company, USA) photometers. One photometer pro-
vides the AOD at 5 channels (340, 440, 500, 675 and 870)
while the other the AOD at 1020 nm, the columnar water
vapor and the total column ozone, using three UV and two
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IR bands, one of them is 1020 nm. The AODs were derived
from the instantaneous solar flux measurements using the in-
struments internal calibration. The instruments are calibrated
at JPL and calibration constants are stored in the instruments
to evaluate AODs for each time of observation based on Lan-
gley technique. We have not calibrated the sun-photometers
just before the cruise, but inter-comparison results with other
recently calibrated sun-photometers used onboard found to
be well within the mean variation of the measured parame-
ters. With this inter-comparison results, we did not find any
drastic deviation in the calibration values after the cruise.
The field-of-view (FOV) of the Microtops-II is 2.5◦, while
the FWHM of the filters is in the range 5 to 10 nm. We have
checked the error in the AOD estimation at all wavelengths
individually and found that the absolute error was well be-
low or equivalent to±0.03 (Morys et al., 2001), with larger
values in the region of UV. Against previous analyses (Kala-
pureddy and Devara, 2008; Kalapureddy et al., 2009), special
care was taken now on reducing the error in the AOD, since
positive bias (+0.03) at 340 nm or negative bias (−0.03) at
1020 nm can strongly affect the results (mainly the constant
termsa1 anda2 of the polynomial fit, see Eq. 2). Cachorro et
al. (2004) have pointed out that an inaccurate calibration can
lead to a diurnal cycle of the AOD (mainly in the UV) and
would result in significant AOD errors at the wavelengths
where the calibrations were off. In the present work, we
have applied this technique of correction to each wavelength
for eliminating the diurnal artifact of the AOD in the UV. It
was also found that application of the method by Cachorro et
al. (2004) at VIS and IR wavelengths does not significantly
affect the AOD values.

On the other hand, Shaw (1980) reported anomalous weak
absorption at 1010 nm, possibly from water vapor, since the
extinction at this wavelength increases when column water
vapor (precipitable water, PW) increases. During ICARB
the PW was found to be 2.22±0.44 cm, ranging from 1.0
to 5.0 cm (Kalapureddy et al., 2008). So, a correction has
to be done at the AOD1020 due to water-vapor effect. This
was done here for the first time in contrast to previous works
(e.g., Kalapureddy et al., 2008, 2009) where water-vapor ab-
sorption effects at 1020 nm were assumed negligible. The
water-vapor absorption at 1020 nm was calculated using the
absorption coefficient of SMARTS2.9.2 model (Gueymard et
al., 1995), and found to be∼0.0015. The results showed that
the water-vapor absorption ranged from 0.007 to 0.035 con-
tributing to ∼3–15% in AOD1020. Eck et al. (2001) found
a water vapor optical depth of∼0.009 for a tropical atmo-
sphere with 4.0 cm of PW at 1020 nm, using water vapor line
spectrographic parameters as given by Giver et al. (2000).
Although the water-vapor contribution to AOD1020 is very
low, its consideration affects retrieval ofa1 anda2.

There is another possible uncertainty associated with the
1020 nm channel due to the temperature-sensitivity of sili-
con detector at this wavelength (∼0.002/◦C) (Holben et al.,
1998). This remains a source of uncertainty at AOD1020 that
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Fig. 1. The cruise legs (solid lines) of the Sagar Kanya 223B in the
Arabian Sea in the period 18 April–10 May 2006 with indications
of the daily position of the ship at 05:30 UTC denoted by the circles.
The major ports and coastal urban centers on the mainland adjoining
the cruise track are also identified. The date at each position also
indicated (A=April, My=May).

may not exist for the other wavelengths where the detector
temperature sensitivity is insignificant. Although tempera-
ture sensitivity is likely a problem only during very clear
conditions when the AOD is very small, the Microtops II al-
gorithm does not take temperature sensitivity of the silicon
photodiodes into account. Since Microtops-II does not have
a built-in temperature sensor, temperature measured by the
onboard meteorological system was used to further reduce
the error of the AOD1020 estimation. Finally, the Microtops
II was stored in a shaded area after each observation to mini-
mize temperature variation and keep its internal temperature
near constant.

Since the Microtops-II is a handheld instrument, there
could be pointing errors and the magnitude of these errors
would be higher on moving platforms. Since two differ-
ent Microtops-II photometers (sunphotometer and ozonome-
ter) were used in the study, the pointing accuracies could be
also different. These pointing errors were reduced by mount-
ing the two Microtops-II parallel to each other on a wooden
plate, operating them simultaneously, and having the same
observer throughout the cruise period make the sunphotome-
ter measurements. Besides this, during each observation,
three sets of measurements were collected in quick succes-
sion (∼1 min) at each 10-min time interval to minimize er-
rors due to sun pointing on a moving platform. If the three
measurements produced differences in the AODs above 5%,
those three data points were rejected for further analysis.

Great attention was given to choose which of the three
measurements in each 10-min interval was used for further
analysis. Of the three, the measurement that gave the best
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second-order polynomial fit to the lnτλ vs. lnλ data points
(Eck et al., 1999; Kaskaoutis et al., 2007a) was finally re-
tained and the other two AODs were discarded. The fit was
controlled by the highestR2 associated with it, while cases
with R2 <0.92 were omitted. In case the errors were close
to each other, additional criteria were followed, such as the
AOD values not to change significantly from the previous
measurements or the spectral AOD variation to have as less
spectral curvature as possible. Furthermore, data recorded
around cloud passage or near the FOV of the instrument were
not considered for analysis (Kalapureddy and Devara, 2008).

3 Climatology of the area

The climatology in the area is mainly dictated by the pres-
ence of monsoon, which divides the year into four peri-
ods. The mean winds are weak and predominantly from the
north/northeastern direction during the winter monsoon sea-
son (December to March) where advection from the Indian
continent is important. In the summer monsoon season (June
to September) the mean winds are strong (10 to 15 ms−1)

and blow mainly westerly/southwesterly favoring the advec-
tion from oceanic regions and western land areas. During
March–June, it is hot and dry in the Africa, Arabian Penin-
sula and the Iranian desert regions, and the westerly winds
carry significant amount of dust particles over Northern AS
(Moorthy and Satheesh, 2000; Li and Ramanathan, 2002;
Moorthy et al., 2005). A complete analysis of the wind pat-
tern and rainfall over AS has been reported in Moorthy and
Satheesh (2000). During the ICARB campaign, winds over
the AS are mainly from the northwestern sector with an av-
erage speed of about 6 to 9 ms−1 (Kalapureddy and Devara,
2008). Precipitation was almost absent throughout the cruise
period. A low level anticyclone centered over the central AS
was the cause for the northwesterly winds; the associated
winds were low. The mean synoptic wind pattern (derived
from the NCEP-NCAR reanalysis data) at 850 hPa over AS
during ICARB showed strong westerlies over the northern
part AS and weaker northerly/northeasterly over the south-
ern part of AS (Nair et al., 2008).

4 Theoretical background and methodology

The spectral dependence of AOD (τλ) is frequently parame-
terized by the̊Angstr̈om exponentα, which is computed from
Ångstr̈om’s (1961) empirical formula:

τλ = βλ−α (1)

whereβ represents the aerosol load in the atmosphere and
is equal to the AOD at the wavelength of 1 µm, whileα is
an indicator of the aerosol size or of the fraction of the fine-
mode aerosols in the atmosphere (Schuster et al., 2006).

The validity of theÅngstr̈om formula is predicated on the
validity of the Junge power law (Junge, 1955) for the aerosol-
size distribution, especially in range from 0.05 to 10 µm,
where significant extinction takes place and the spectral vari-
ation of the refractive index does not impose significant vari-
ations on the Mie extinction factor. The Junge power law as-
sumes a lognormal aerosol-size distribution that is far away
from the bi-modal distribution of the aerosols in the atmo-
sphere (e.g., Eck et al., 1999). Therefore, theÅngstr̈om for-
mula in general is well fitted to the AOD values at the shorter
or longer wavelengths. However, when the spectral range is
extended, significant deviations from Eq. (1) may be found
(Kaskaoutis and Kambezidis, 2006). This fact leads to the
departure from linearity when the spectral AOD is plotted
in logarithmic coordinates (Eck et al., 1999; Kaskaoutis et
al., 2007a) and differentα values can be obtained for differ-
ent wavelength ranges (Reid et al., 1999; Kaskaoutis et al.,
2007a). Even under these conditions when a curvature is ob-
served in the lnτλvs. lnλ data points, the data still contain
useful information about the aerosol type, size distribution
and aerosol modification processes (e.g., coagulation, hu-
midification) (King and Byrne, 1976; Eck et al., 1999; O’
Neill et al., 2001; Gobbi et al., 2007; Basart et al., 2009).
Therefore, a second order polynomial fit to the lnτλvs. lnλ
data can give better accuracy than a linear fit:

lnτλ = a2(lnλ)2
+a1lnλ+ao (2)

where the coefficienta2 accounts for the curvature often ob-
served in sunphotometric measurements (Eck et al., 1999;
Kaskaoutis et al., 2007a).

The ozone optical depth was subtracted in the derivation
of the AOD, since its contribution to the total atmospheric
optical depth can be significant under low turbidities. How-
ever, the absorption due to the trace-gases (mainly NO2) was
assumed to be negligible as the AOD due to NO2 is generally
∼0.006 (Tomasi et al., 1983; Kaskaoutis et al., 2007b). The
Ångstr̈om parameters,α andβ, were calculated via the least-
squares method in the spectral ranges 340–1020 nm and 340–
870 nm. According to the analysis performed by Kaskaoutis
and Kambezidis (2008), this method is the least wavelength
dependent for the calculation of the̊Angstr̈om parameters.
The second-order polynomial fit (Eq. 2) was also applied to
the AOD values at six wavelengths (340, 440, 500, 675, 870
and 1020 nm), although any three of them were sufficient for
this computation. As second-order polynomial fit was also
applied to the five shorter wavelengths, excluding the 1020-
nm wavelength data, in order to investigate the differences in
the retrieved parameters. Three typical examples of the spec-
tral AOD variation over different parts of the AS are shown in
Fig. 2. These measurements are taken (a) on 18 April when
the ship was near to the western Indian coast, (b) on 29 April
when the ship was crossing the northern part of AS, and (c)
on 1 May in the far AS (see Fig. 1). Very different AOD val-
ues as well as wavelength dependence are revealed depend-
ing strongly on the aerosol type and fine-to-coarse ratio. On
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Fig. 2. Spectral variation of the AOD vs. wavelength in logarithmic scale for three distinct areas of AS,(a) near the Indian coast,(b) in the
northern AS and,(c) in the far AS. The linear and the 2nd order polynomial fits for each case are shown.

18 April, the linear and 2nd order polynomial curves reveal
excellent fit, with low uncertainties. Note the negativea2
value and the highα value of the linear fit indicative of large
presence of fine-mode aerosols near the coast. On 29 April,
the above situation reverses, with the coarse-mode aerosols
dominating (positivea2 and lowα value). The linear and
polynomial fitting curves exhibit high accuracy in contrast to
those of 1 May when significant uncertainties and errors in
the retrieved parameters (e.g.,α, a1 anda2) occur in close
association with the low AODs.

5 Estimation of errors and uncertainties

Before investigating the temporal and spatial variation of the
aerosol features over the AS, a detailed analysis was carried
out to estimate the errors and uncertainties of the 2nd order
fit to the spectral AOD data. An account of the typical er-
rors in the estimation ofa1 anda2 (Eq. 2) is provided in this
section. In general, the 2nd order polynomial fit to the lnτλ

vs. lnλ data has been shown to provide good agreement with
measured AODs, with standard errors of the fit on the same
order as the uncertainty in the measurements. In contrast,
the standard errors of the linear fit are significant with re-
spect to the measured AODs (Eck et al., 2001; Kaskaoutis
and Kambezidis, 2006). However, this is not always valid
over oceanic regions with relatively low AODs (see Fig. 2).
Figure 2 shows typical plots on the relation of AOD vs. wave-
length with both linear and polynomial fits. Only Fig. 2c
shows significant standard errors for both. Figure 3 shows
the correlation of the typical errors ina1 anda2 computed
in the two spectral bands (340–1020 nm and 340–870 nm)
with the AOD at 500 nm (AOD500). Large errors in the com-
puted coefficients are seen for low AOD500 values (<0.2)
which themselves exhibit large variation. Nevertheless, as
the atmospheric turbidity increases (AOD500>0.3) the error
in the estimates decreases dramatically. This feature is com-
mon in sunphotometric measurements and has been observed

14. (pg16;left side) Ramanathan, V., Crutzen, P. J., Lelieveld, J., Mitra, A. P., 
et al.: Indian Ocean Experiment: An integrated analysis of the climate and the 
great Indo-Asian haze, J. Geophys. Res., 106(D22), 28371–28398, 2001. 
doi:10.1029/2001JD900133. 
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Fig. 3. Correlation of the errors ina1 anda2 obtained from the
polynomial fit of the lnτλ vs. lnλ in the two spectral bands with the
AOD500 values.

in many studies (see Kaskaoutis et al., 2006 and references
therein) and is attributed to the higher variability of the spec-
tral AODs under these conditions.

The day-to-day variation of the uncertainties ina1 anda2
is presented in Fig. 4. Large uncertainties ina1 anda2 oc-
curred in the period from 21 to 24 April and from 1 to 4
May, both periods having low AOD values (Fig. 3) as the
ship was in the far AS (Fig. 1). On the other hand, low errors
are present in the period from 25 to 27 April, the ship was
near to Indian coast, and from 6 to 10 May (in the northern
AS), both time periods with high AODs. When the spec-
tral band 340–1020 nm was used for the polynomial fit, the
errors were significantly lower in almost all cases, exhibit-
ing mean values of erra1=0.28±0.17 and erra2=0.25±0.16
against those of erra1=0.47±0.28 and erra2=0.36±0.22 for
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Fig. 4. Day-to-day variation of the errors ina1 (top) anda2 (bottom)
in the spectral bands 340–1020 nm and 340–870 nm.

the 340–870 nm band. The errors ina1 and a2 computa-
tions show the relative skill of the 2nd order polynomial fit
(Eq. 2) in simulating the AOD spectral distribution and ex-
press the scatter of the AODs around the polynomial curve.
Large errors ina1 anda2 lead to even larger uncertainty in
the linear fit, which implies increased uncertainty inα (see
Fig. 2). Note also that, according to Schuster et al. (2006) and
Kaskaoutis et al. (2007a),α ≈ a2−a1. Therefore, the uncer-
tainty in a1 anda2 drives the uncertainty inα. It was found
that the highest uncertainty in botha1 anda2 is found on days
or cases where the curvature (a2) was both high and concave
downward indicating the presence of fine-mode aerosols (see
Fig. 2c). On the other hand, significant presence of coarse-
mode aerosols in the northern part of AS (29 April and 6–10
May) results in a bimodal aerosol size distribution where the
linear and the second order polynomial fits present higher ac-
curacies (see Fig. 2b), as also proved by Eck et al. (1999). As
will be seen in the following, on the days of high errors (21–
24 April and 1–4 May), when the ship was cruising in the far
AS, theα values were the highest. High curvature translates
into higher scatter of the AOD values, further uncertainties
in the linear fit and, therefore, larger error in theα retrievals
(Kaskaoutis et al., 2006). The correlations between the er-
rors ina1 anda2 with theÅngstr̈om exponentα for each of
the two spectral bands are:

erra2 = 0.504α+0.566, R2
= 0.30(340−1020 nm) (3)

erra1 = 0.473α+0.568, R2
= 0.29(340−1020 nm) (4)

erra2 = 0.319α+0.795, R2
= 0.34(340−870 nm) (5)

erra1 = 0.259α+0.795, R2
= 0.34(340−870 nm) (6)

The above equations reveal a covariance betweenα and the
uncertainty in the computed parameters (a1 anda2), despite
the large scatter. In general, the uncertainty increases with

increasingα although their correlation is not as high as that
of AOD500 (Fig. 3). Thus, there are several cases associated
with largeα and low errors, mainly when the ship was near
to the coast; in these cases the AOD is high (see Fig. 2a).
These results are in general agreement with those reported
by previous researchers (Eck et al., 1999; Kaskaoutis et
al., 2007a), which showed that the 2nd order polynomial
fit presents larger uncertainties for large fine-mode aerosol
fraction, while the fit seems to be more accurate for bimodal
aerosol size distributions with a large coarse-mode fraction.

According to Schuster et al. (2006),α is equal to the dif-
ferencea2–a1 to a first approximation. When the curvature
is negligible (a2 ≈0), thenα ≈–a1. The correlation between
α anda1 showed significant scatter for both spectral bands
(340–1020 nm and 340–870 nm). However, the correlation
was somewhat better using the first spectral band (R2=0.63,
against 0.61 for 380–870 nm). It is worth noting here that
special care was taken in the present work on validating the
AOD data (e.g., application of the Cachorro et al. (2004)
method, consideration of PW and temperature effects), and
this improves theα vs.a1 (340–1020 nm) relationship com-
pared to that presented in Kalapureddy et al. (2009), where
theR2 was 0.37. Considering the scatter ofα vs.a1 the role
of the curvature in the spectral AOD becomes significant.
Consequently, the inclusion of the spectral curvature in the
analysis enhances the knowledge about the volume fraction
and effective radius of the fine-mode aerosols at intermediate
values ofα (Schuster et al., 2006). The correlation between
the α and a2–a1 is shown in Fig. 5 for the spectral bands
340–1020 nm and 340–870 nm. The two are highly corre-
lated, as indicated by theR2 values of 0.96 (340–870 nm)
and 0.99 (340–1020 nm). Data points lying on thex = y

line, or closely around it, indicate the validity of the rela-
tion α=a2–a1. According to our analysis, the scattered points
(340–870 nm case) correspond to cases where the second-
order polynomial fit does not provide high accuracy. These
findings are in agreement with those by Schuster et al. (2006)
who concluded that the relationα=a2–a1 can be considered
valid for bimodal size distributions with equivalent contri-
butions from fine- and coarse-mode particles. A systematic
overestimation of thea2–a1 againstα is observed for high
α values (>1.0) (upper panel), while is absent forα <0.7.
Schuster et al. (2006) reported that the conditiona2–a1≥2
corresponds to size distributions dominated by fine-mode
aerosols and thea2–a1 ≤1 to size distributions dominated by
coarse-mode particles, whereas intermediate values ofa2–a1
to a wide range of fine-mode fractions. Values greater than 2
are absent in our study, while a significant number of values
<1.0 is observed in both graphs. From the above analysis it
is established that the use of the 340–1020-nm spectral band
for the calculation ofα, a1 anda2 values leads to the most
precise results with the lowest curvature. This fact also indi-
cates the great effort and attention spent on the accuracy of
the AOD1020.
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Fig. 5. Correlation between the differencesa2–a1 and theα values
in two different spectral bands. The black lines represent they-x
condition and the red line the linear equation given in the graph.

6 Results

6.1 Daily variation of the aerosol properties

Figure 6 presents the day-to-day variation of spectral AOD
and α, at high temporal (∼10 min) resolution for the AS
region during ICARB. These observations compared well
with the daily mean AOD500 temporal variation of other
ICARB data (Kedia and Ramachandran, 2008a) as well as
with MODIS (Terra and Aqua) observations (Kalapureddy
and Devara, 2008). The AOD at 340 nm (0.31±0.14) is
significantly higher than at longer wavelengths, 0.15±0.07
at 870 nm and 0.13±0.07 at 1020 nm (Fig. 6 upper panel).
The AOD500 varies significantly from 0.07 to 0.71 thus
implying large variability in aerosol load over the entire
AS during ICARB. The mean AOD500 was found to be
0.25±0.11, which is significantly higher than that observed
over open oceanic regions in Pacific and Atlantic oceans
(Smirnov et al., 2002). However, the AOD500 over AS is
much lower than that observed over BoB (0.36±0.12) during
pre-monsoon (March–April 2006) ICARB (Kalapureddy and
Devara, 2008), or from previous studies (e.g., Ramachan-
dran, 2004a). During periods when the ship was nearer to
the Indian coast, (e.g., 18–19, 25–27 April) the spectral AOD
variation is larger due to the proximity to the urbanized costal
harbors. It is known that aerosols of smaller size contribute
more to the AOD at shorter wavelengths (e.g., Schuster et
al., 2006) and the condensation growth and the coagulation
mechanism of sub-micron aerosols are more efficient in pro-
ducing larger (accumulation- and/or coarse-mode) aerosols
than primary production (Fitzgerald, 1991; Moorthy et al.,
1999). These processes are more efficient over coastal re-
gions due to larger amount of hygroscopic components in the
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Fig. 6. Temporal variation of the spectral AOD (top) andÅngstr̈om
exponentα in two different spectral bands, 340–1020 nm and 340–
870 nm (bottom) in the AS during the ICARB campaign.

coastal aerosol composition. The effluents from the anthro-
pogenic activities can contribute to fine- and accumulation-
mode aerosols through secondary production mechanisms
(condensation, coagulation, and gas-to-particle conversion)
in the warm and humid tropical environment (Moorthy et al.,
2005; Babu et al., 2008). As a direct consequence of the
anthropogenic emissions in the industrialized ports of the In-
dian west coast, the AODs present the highest values in the
period from 25 to 27 April. Another significant aspect is the
low AODs from 1 to 4 May, when the ship was far away from
land. On the other hand, on 29 April and on the last days of
the cruise the AODs at longer wavelengths are comparable in
magnitude with those of 25–27 April. However, the AODs at
shorter wavelengths are much lower, thus indicating aerosol
presence of different origin and composition than the previ-
ous ones.

The day-to-day variation of theα values computed in
the spectral bands 340–1020 nm and 340–870 nm is shown
in Fig. 6 (lower panel). The twoα values exhibit simi-
lar day-to-day variability and their mean values and stan-
dard deviations are 0.90±0.19 for 340–1020 and 0.92±0.18
for 340–870; their intercorrelation is statistically signifi-
cant (95% confidence level) withR2=0.85. These values
agree with those of 0.86±0.20 over AS and are signifi-
cantly lower than that (1.21±0.11) over BoB reported by
Kalapureddy and Devara (2008) during ICARB For winter
season, the average value ofα for the period 1996–2000
was reported to be 1.50±0.05 over AS, whileβ was 0.10
(Ramachandran, 2004a), which is significantly higher than
the values observed during our experiment. This difference
might be attributed to both seasonal differences between the
observations Ramachandru (2004a) and the ICARB mea-
surements and differences in the spatial domain and sam-
pling resolution. However, the meanα value measured by
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Ramachandru (2004a) in April for the period 1996–2000
was much lower, 1.27±0.07. Theα values in both spec-
tral bands are larger than those found over open oceanic ar-
eas in Pacific (Lanai [0.76], Nauru [0.43] and Tahiti [0.74])
and Atlantic (Bermuda [0.93] and Ascension [0.62]) oceans
(Smirnov et al., 2002). This indicates the higher influence
of the continental anthropogenic aerosols of the Indian sub-
continent that dominate the aerosol load over AS. Satheesh et
al. (2006a) also found lowerα values determined in the spec-
tral band 380–1025 nm compared to those in 380–870 nm.
This means that as the wavelength region used forα deter-
mination shifts towards shorter wavelengths higherα values
are observed, a fact that implies a convex-type curve in the
lnτλvs. lnλ relationship, characteristic of aerosols with sig-
nificant fraction of coarse-mode particles (Eck et al., 1999;
Schuster et al., 2006; Kaskaoutis et al., 2007a). This is more
pronounced on 29 April and from 6 to 10 May, where theα

values are lower, indicative of the presence of coarse-mode
aerosols. In contrast, from 1 to 4 May whenα was larger, the
α340−1020seems to be larger than that at 340–870 nm, imply-
ing a concave-type curve (Eck et al., 1999; Schuster et al.,
2006; Kaskaoutis et al., 2007a). As previously noted, on the
first days of the cruise when the ship was near the coast, the
α values were high (above 1.0). The same feature was re-
peated between 1 to 4 May when the ship was in the far AS.
It is rather unexpected to observe such highα values over an
oceanic environment, but it was found that on those days the
winds were rather low (below 5 m s−1) not favoring the pro-
duction of marine aerosols. Therefore, with the absence of
intense sea-surface winds and the absence of air masses orig-
inating from the arid landscapes surrounding AS from north
and west, the aerosol loading over the area is mainly dom-
inated by small anthropogenic components, thus explaining
the relative highα values. In close agreement, chemical anal-
ysis of the aerosols over AS (George and Nair, 2008; Reddy
et al., 2008) showed that the non-sea-salt component dom-
inated even in far AS, indicating large fraction of the total
aerosol mass was anthropogenic aerosols. In contrast, on 29
April and in the period 6–10 May, theα values were low
indicating a significant fraction of coarse-mode particles in
the total particulate mass. On these days, the research vessel
was in the northern part of the AS and the aerosol popula-
tions were influenced by the nearby arid continental areas.
The temporal and spatial variability of aerosol mass, chemi-
cal composition, and size distribution over AS could be due
to both heterogeneity in the aerosol emissions from the In-
dian subcontinent and the variability in wind speed and rel-
ative humidity (George and Nair, 2008; Nair et al., 2008).
As an example, surface winds during the monsoon season
may produce abundant sea-spray over the adjoining seas, and
the optical properties of marine aerosols so produced will be
dominated by the large particles.

The coefficientsa1 anda2 obtained by the polynomial fit
(Eq. 2) in the AOD values using the spectral bands 340–
1020 nm and 340–870 nm are shown in Fig. 7 (upper and
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(bottom) calculated in the 340–1020-nm and 340–870-nm spectral
bands.

lower panel, respectively). Significant daily variability was
observed in botha1 anda2. Large differences can also be
observed even in a narrow (10–20 min) time interval, since
thea1 anda2 values are very sensitive to any change in the
AOD value at any wavelength. Due to further calibration
of the AODs in the present work,a1 anda2 are somewhat
different from the results of Kalapureddy et al. (2009). In
both figures thea2 values are negative in the majority of the
cases (51.5% for 340–1020 nm and 64.7% for 340–870 nm)
indicating a concave type curve in the lnτλ vs. lnλ relation.
This type of curve implies the presence of significant amount
of fine-mode aerosols (Eck et al., 1999). Similar negative
curvatures were also found over the tropical coastal Indian
station, Visakhapatnam, during the summer monsoon period
(Madhavan et al., 2008).

Presence of large negativea2 values is observed on certain
days (21 to 24 April and 1 to 4 May), when the research
vessel was in the far AS region. Furthermore, the figure
shows the presence ofa2 values close to zero on days when
the ship was close to the western Indian coast (18–19 and
25–27 April), thus indicating a bimodal aerosol size distri-
bution with a large contribution from coarse particles. The
figure also shows positivea2 values on 29 April and on the
last days of the cruise, suggesting the presence of a signifi-
cant fraction of coarse-mode aerosols advected from the dry
desert regions. Previous studies using measurements (Eck
et al., 1999; Kaskaoutis et al., 2007a; Basart et al., 2009)
or theoretical approaches (Schuster et al., 2006) have shown
that the curvature is larger (more negativea2 values) in cases
with significant fraction of fine-mode aerosols, with the cur-
vature becoming negligible (close to zero or even positivea2
values) in atmospheres dominated by bimodal aerosol size
distributions or coarse-mode particles. These results agree
with these previous observations and model output from the
AS region.
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Thea1 varies widely from−2.16 to 0.08 (340–1020 nm)
and from−2.29 to 0.46 (340–870 nm). The respectivea2
values range from−1.08 to 0.69 and from−0.93 to 0.76.
In general, the meana2 value (−0.02±0.22) is lower (in
absolute value) in the spectral range 340–1020 nm thus im-
plying less curvature, on average, than that computed with-
out the AOD1020 value (−0.07±0.24). Assuming the cur-
vature for−0.1<a2 <0.1 was negligible, it was found that
the ∼46% of the cases lie within this limit when the 340–
1020 nm band was used. However the fraction of usable data
is lower (∼42%) for the band 340–870 nm. These cases were
mostly observed in the period 25–29 April and on the last
days of the cruise when bimodal aerosol size distributions
with intermediate values ofα dominated. In these cases (587
for 340–1020 nm) the errors ina1 anda2 computations are
much lower (0.21 and 0.18 respectively) than those presented
in Fig. 4. Furthermore, theα340−1020 value is 0.84, which
is nearly equal to the absolute value ofa1=−0.85. For the
data using the 340–870 nm band, the uncertainties ina1 and
a2 derived from the fits assuming negligible curvature (530
cases) are 0.34 and 0.27, respectively. The meanα340−870
value is 0.83, which agrees with the absolutea1=−0.86. Re-
gardinga1, almost all of its values are negative, as expected,
sincea1=−α on cases without curvature. However, some
non-physical positivea1 values were observed. The number
of positivea1 values is larger when they were computed in
the 340–870-nm band (7 cases) against only 1 in the band
of 340–1020 nm. However, a significant fraction of posi-
tive a1 values was observed in the clean marine environment
of Nauru (Kaskaoutis et al., 2007a). From a detailed anal-
ysis it was established that these (positive) values are ob-
tained in cases that AOD1020>AOD870 or when the AODs at
the shorter wavelengths are much higher compared to those
at the longer ones. It should be noted here that the addi-
tional calibration of the AODs (application of the Cachorro et
al. (2004) method, consideration of the PW and temperature
sensitivity effects) resulted in the presence of lower number
of positivea1 compared to the previous work (Kalapureddy
et al., 2009). The positivea1 values in the band of 340–
870 nm are mainly attributed to the larger AOD870 values
instead of the AOD675 values, a rather common characteris-
tic in clean marine environments (Kaskaoutis et al., 2007a).
However, these cases are very few over AS, a fact that differ-
entiates this environment of background clean marine one.
Also, the nearly absence of “unreal” positivea1 values shows
the accuracy of the AOD retrievals over a moving platform
in an oceanic area.

During the pre-monsoon season, the dry Indian landscapes
along with the anthropogenic activity would inject of sig-
nificant amount of particulate matter in the atmosphere and
transport them over AS. The air mass back trajectories for all
the cruise days in the central part of AS indicate absence of
any significant long-range transport from the adjoining con-
tinents, as the air masses seem to come from oceanic origin
mainly for the 500-m level (George and Nair, 2008; Reddy

et al., 2008). Further, It has been seen that sulfates and other
continental aerosols are transported thousands of kilometers
over AS and IO during the northeast monsoon season (Ra-
machandran and Jayaraman, 2002). These aerosols are re-
sponsible for the enhancement ofα values in the central AS,
since it was found (not presented) that the air-mass trajec-
tories at 1500 m come from continental India when the ship
was cruising the central part of AS. Meteorological studies
showed that high aerosol concentrations could be linked to
transport from the Indian subcontinent and also from sources
in the Middle East and Arabian Peninsula (Moorthy et al.,
2005). Although heavier aerosols may reside (via dry de-
position) there still remains a strong possibility for fine dust
aerosols from Arabia and other arid regions, whose size be-
longs to the accumulation size regime (Hess et al., 1998), to
be transported over AS. Furthermore, mineral dust was found
to be a substantial component in most of the aerosol samples
collected in AS (Savoie et al., 1987; Nair et al., 2004; Kumar
et al., 2008). Analyzing spectral AODs from a network of
observatories over Indian mainland during ICARB, Beegum
et al. (2008) showed the significant role of transported dust
in enhancing AOD and decreasingα over the Indian subcon-
tinent during April and over the northern part of India and
the Indo-Gangetic Plains in May.

6.2 Spatial distribution of the aerosol properties

In this section the spatial distribution of aerosol features over
the AS are presented. Similar AOD andα maps have already
been published by Kalapureddy and Devara (2008) for the
whole ICARB campaign, including BoB, IO and AS. In this
work these graphs are presented over the AS in more detail
for to survey the basic aerosol features that can aid in in-
terpreting the results of the present work, while the spatial
distributions ofa1 anda2 are presented for the first time. It
should be noted here that because the segment of the ICARB
in the AS lasted about one month, it is certain that the aerosol
parameters underwent changes due to changes in the synop-
tic situation. As such, some of the spatial features could be
partly caused by these temporal changes. Figure 8 shows the
spatial distribution of AOD500 andα340−1020 over AS region
during the ICARB. There is a strong southwest-to-northeast
gradient in the AOD500 values since the aerosol load over
the northern part of AS is larger than that of the southern.
However, the lowest AOD500 values are observed in the cen-
tral part of AS (around 13–14◦ N). When the research vessel
was cruising in the north AS region, the advection of dust by
the northwesterly winds cause an enhancement in AOD. In
a previous study, the AOD was found to increase with lat-
itude between equator and 12◦ N, while over northern AS,
it did not show significant latitudinal variations (Satheesh et
al., 2006a). These researchers reported mean AOD values
of 0.29±0.12 during the winter monsoon season (Novem-
ber to March) and 0.47±0.14 during the summer monsoon
season (April to September). The respectiveα values were
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0.7±0.12 and 0.3±0.08. The differences in the AOD spatial
distribution between the present study and that by Satheesh
et al. (2006a) are mainly attributed to the differences in the
season, location of the measurements, and the fact that the
present study does not include data south of 8◦ N, where the
AOD has been observed to be lower without a strong conti-
nental influence (Satheesh et al., 2006a). In addition to the
latitudinal variation, a longitudinal gradient is observed, with
a large decrease in AOD500 values from the Indian coast to-
wards the far AS. As the distance from the coast increases
the continental anthropogenic aerosols undergo changes in
size due to coagulation and condensation, and would also be
removed from the atmosphere by sedimentation and precipi-
tation processes. Kedia and Ramachandran (2008b) investi-
gated the AOD variation with distance from the coast during
ICARB. They found that the scaling distance (distance from
the coast at which the AOD becomes 1/e of its value) was
∼2000 km in AS. Ramachandran (2004b) has indicated the
importance of wind speed over oceanic regions in altering
the aerosol spectral characteristics and the effect it has on the
gradients seen in terms of the continental influence. Close
to the Indian subcontinent aerosol-mass concentrations were
found to range between 21 and 53 µg m−3 (Nair et al., 2004)
and were significantly larger than those near the Maldives
(∼19 µg m−3) and at the Kaashidhoo Climate Observatory
(4.9◦ N, 73.5◦ E), far away from the coast (Ramanathan et
al., 2001).

The α340−1020 values are high (above 1.0) in the central
part of the AS closely associated with the low AOD500 val-
ues (Fig. 8 bottom panel). It is worth noting that in the
far AS (west of 60◦ E) theα340−1020 values remained high,
without showing strong influence from the arid regions of
the Arabian Peninsula. In contrast, lowα340−1020 values
are observed in the north part of AS, thus indicating the
influence of desert-dust particles transported over this re-
gion. The strong south-to-north gradient inα340−1020 val-
ues around 15–16◦ N is characteristic, withα340−1020 values
above 0.9 in the south and below 0.8 in the north. How-
ever, the most common situation is the intermediate values of
α340−1020 (near to 0.9), indicating a mixed aerosol field over
AS from both anthropogenic and natural emissions. Mixed
aerosols also dominate near to the Indian coast (Kalapureddy
et al., 2009). Unlike the other marine regions, where sea-salt
aerosols contribute mostly to the total aerosol-mass concen-
trations (Smirnov et al., 2002), the aerosol chemical com-
position analysis performed over IO and Kaashidhoo dur-
ing INDOEX 1999 found that the sea salt contributes only
11% and 17% to the total AOD, respectively (Ramanathan et
al., 2001; Satheesh et al., 2002). Furthermore, Satheesh et
al. (2006b) found that the sea-salt contribution to the AOD
was about 20–30% in the northern AS and 30–40% in the
southern. This fact can partly explain the relative highα val-
ues over the far AS. It is well known that the northern AS
is influenced by the Indian subcontinent and West Asian arid
regions, whereas the southern AS and northern IO are influ-
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Figure 8.  

Fig. 8. Spatial distribution of the AOD500 (top) andα340−1020(bot-
tom) values regarding the whole set of measurements over the AS
region. The ship track is shown in black line, while the positions
of the sun photometric measurements are indicated with dots. Note
that the sun photometric measurements were taken only in daytime
and under cloudfree sky.

enced by several source regions where the ITCZ has a great
impact (Nair et al., 2004; Satheesh et al., 2006a). Exten-
sive measurements over AS from the Minicoy Island (Moor-
thy and Satheesh, 2000) have shown that the AOD is higher
during the summer monsoon, whereas its spectral variation
is significant during winter, showing an important seasonal
variation. Therefore, the influence of the local monsoon sys-
tem on the seasonal aerosol properties over AS is very im-
portant and must be examined in further detail.

In Fig. 9 (left and right panels) the spatial distribution of
thea1 values over AS is shown for the spectral bands of 340–
1020 nm and 340–870 nm, respectively. In general, the two
maps agree with each other. More specifically, large negative
a1 values are depicted in the far and central AS, while over
north AS and along the Indian coasta1 is smaller in absolute
value. In general for the south AS,a1 for 340–1020 nm is
smaller in absolute value thana1 for 340–870 nm. However,
this area is associated with very low AODs and the estimated
errors may be high. Thus, the inclusion of the AOD1020value
in the polynomial fit may produce large differences in thea1
values. The correlation of thea1 values in the two spectral
bands exhibits large scatter (R2=0.30), further highlighting
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Figure 9.  

 
 

Fig. 9. Same as Figure 8 but fora1 values regarding the whole set of measurements over the AS region computed in the 340–1020-nm band
(left) and the 340–870-nm band (right).

the great importance of the wavelength interval used for such
computations.

The most important parameter of the polynomial fit is
the a2 value, which presents the curvature of the AOD
spectral distribution in logarithmic coordinates and can be
used as an additional tool for the aerosol-type discrimina-
tion (Kaskaoutis et al., 2007a). The spatial distribution of
botha2 values is shown in Fig. 10 (left and right panels) for
the 340–1020 and 340–870 nm, respectively. Positive values
of a2 are indicative of convex-type curves closely associated
with coarse-mode particles, while negative curvatures with
fine-mode aerosols. Near to zeroa2 values are indicative
of bimodal aerosol size distributions with similar contribu-
tions of coarse and fine particles. The majority of the area is
covered with negativea2 values for both wavelength ranges
over most of the southern and central parts of AS, indicat-
ing aerosols having a large fine-mode fraction. On certain
occasions, positivea2 values were also found in the south-
ern part of AS, especially in left panel of Fig. 10. Further-
more, the inclusion of AOD1020 in thea2 retrievals results in
larger fraction of positivea2 values (∼49%) against∼35%
for the 340–870 nm case, a scenario that seems to be more
likely over an oceanic environment. Points with concurrent
positivea2 values from the 340–1020 nm band with negative
a2 from the 340–870 nm were mainly observed near the In-
dian coast and in the south AS. Therefore, the spectral band
used for thea2 retrievals affect the resultinga2, as the co-
efficient of determination between the two sets ofa2 values
is low, R2=0.23. Positive values of thea2 (in both Figures)
are observed in the northern AS, where the high AODs are
dominated by coarse-mode aerosols. Over these regions the
a1 values are less negative (Fig. 9) while theα340−1020values
the lowest (Fig. 8 bottom panel).

6.3 Classification of aerosol properties over AS
sub-regions

Aerosol spectral measurements can be characterized by 3 in-
dependent variables: i) the AOD, ii) the̊Angstr̈om exponent
(α), and iii) the spectral curvature ofα (a2 or dα). Gobbi
et al. (2007) proposed a simple graphical method to visu-
ally convert (α, dα) to the contribution of fine aerosol to
the AOD and the size of the fine particles. This classifica-
tion scheme is based on Mie calculations and correlates the
α vs. dα plot with the fine-mode fraction at 675 nm and ef-
fective radius of fine aerosols. The same scheme was per-
formed over AS and three sub-regions for a first time over
an oceanic environment. However, there are three differ-
ences in applying the classification scheme to the oceanic
data as opposed to its previous uses: 1) the classification
scheme was performed via Mie calculations using a complex
refractive index,m, of 1.4–0.001i, which is typical for ur-
ban/industrial aerosols and may not accurately represent m
of the aerosols over the AS; 2) the classification scheme is
applied over much larger regional scales instead of a more
localized AERONET site as in the past (Gobbi et al., 2007;
Basart et al., 2009); and 3) the data forα anddα over the
oceanic regions contain much higher variability than found
at the continental AERONET sites. For example Gobbi et
al. (2007) used only cases with AOD>0.15 from AERONET
to avoid errors larger than∼30%. In the present analysis
the whole set of observations was used in order to reveal any
systematic uncertainties over oceanic regions.

The classified three sub-regions of AS and entire AS re-
gions have been used in Fig. 11a–d. Due to the bimodal
aerosol-size distribution, very different values ofα were ob-
served in different wavelength intervals due to the signifi-
cant wavelength dependence of theÅngstr̈om exponent. The
Ångstr̈om exponent difference (dα) was defined asdα =

α(440–675) –α(675–870). It should be mentioned here that
the differences occurred between theα, dα values with those
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Fig. 10. Same as Fig. 9, but for thea2 values.

of α, a2 presented before are attributed to the different wave-
length bands used in the computations. Note also that the
consistency between thedα and the curvature (a2) presup-
poses the same wavelength range (Kaskaoutis et al., 2007a).
In Fig. 11a–d the aerosols are classified by representing their
AOD500 by different colors.

Over the entire AS, a large fraction of data points are out
of the classification scheme, mainly exhibiting large (posi-
tive) dα differences. This occurs because of larger uncer-
tainties in the computations leading to a large spectral vari-
ation ofα (note that the majority of these points correspond
to AOD<0.2) and because the scheme was constructed for
refractive index of urban/industrial aerosols. Negative differ-
ences indicate the dominance of fine-mode aerosols, while
near to zero or positive indicate the effect of two separate
(fine and coarse) modes.

In the coastal AS, nearly all the points are within the clas-
sification scheme. Increasing AOD shows a shift to larger
α values (0.8–1.1) with effective radius between 0.10 and
0.15 µm. The positivedα indicates that these aerosols are
of bimodal distribution having a large coarse-mode fraction
(between 0.3 and 0.5). In contrast to the coastal AS, the high
AODs in the mid AS are associated withα <0.8, while for
AOD<0.3 a wide range ofdα is observed. Pure dust con-
ditions associated withα ∼0.4,n<30% anddα (from −0.1
to 0.3) are also observed (29 April). The mid AS was found
to be the most inhomogeneous region with significant contri-
butions of various aerosol types (Kalapureddy et al., 2009).
These heterogeneities are clearly depicted in theα vs. dα

plot.
The AOD classification in far AS is different from the

other regions, since all the AOD500 values are below 0.3. The
spectral aerosol characteristics can be, in general, divided
into two groups for a threshold of AOD500∼0.2. Cases with
lower AODs exhibit largerα values, also having a wide range
of n anddα. For AOD500>0.2 theα shifts towards lower val-
ues, while the aerosol field may composed of fine (n>0.6) or
coarse (n<0.3) particles. However, the coarse particles dom-
inate, especially for AOD500>0.25 (dα>0.1 andn∼0.2).

Despite the fact that the classification scheme is based
on theoretical calculations and the uncertainties in sunpho-
tometric measurements over oceanic regions, and especially
over a moving platform, may be large. Figure 11 high-
lights the large heterogeneities in spectral aerosol proper-
ties over the AS sub-regions. Theα vs. dα plots present
large differences compared to those obtained over continen-
tal AERONET sites (Gobbi et al., 2007; Basart et al., 2009)
and it is difficult to see any evidence of hygroscopic and/or
coagulation growth from aging of the fine aerosols. How-
ever, because this is the first time that this scheme has been
applied over AS the data can serve as a basis for comparative
studies conducted in other seasons or in the BoB.

7 Comparison between MABL and columnar aerosol
characteristics

Nair et al. (2008) have investigated the spatial distribution of
the sea-surface mass concentration and the fine-mode mass
fraction over AS during ICARB. They found a generally low
mass concentration of 16.7±7 µg m−3, almost half of that re-
ported in previous campaigns (e.g., INDOEX). The coarse-
mode aerosols (radii>1.0 µm) contributed, on average, 58%
to the total aerosol mass in the MABL; note that the air-mass
trajectories at 500 m (not shown) is of marine origin that jus-
tifies the larger presence of coarse-particles. For 62% of the
measurements, the fine-mode fraction was between 0.35 and
0.55, while in 4% of the data this fraction was>0.75, with
the higher fraction of fine-mode particles found mainly over
the regions with negativea2 values. More specifically, in
the central AS, bounded by 65–70◦ E and 10–15◦ N, Nair et
al. (2008) found that, although the aerosol-mass concentra-
tion was low (<15 µg m−3), the contribution of accumulation
aerosols to the total mass was greater than 50%. They had at-
tributed it to faster dry deposition of aerosols, particularly of
the coarse mode, caused by the strong descent of air masses
associated with the strong low-level anticyclone flow prevail-
ing over the area. The MABL aerosol characteristics (Nair et

Atmos. Chem. Phys., 10, 4893–4908, 2010 www.atmos-chem-phys.net/10/4893/2010/



D. G. Kaskaoutis et al.: Heterogeneity in pre-monsoon aerosol types over the Arabian Sea 4905
Pre-monsoon aerosol spectral features over AS 

ACP conversion 49 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11.   

-1.2
-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

αα αα
(4

40
-6

75
) 

- αα αα
(6

75
-8

70
)

 <0.1   0.1-0.2
 0.2-0.3  0.3-0.4
 0.4-0.5  0.5<

(a) whole AS

0.05µm

0.10µm

0.15µm

0.2µm0.3µm
99%
90%

70%

50%

30%

10%

 <0.1   0.1-0.2
 0.2-0.3  0.3-0.4
 0.4-0.5  0.5<

(b) Coastal AS

0.05µm

0.10µm

0.15µm

0.2µm0.3µm
99%
90%

70%

50%

30%

10%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

αααα(440-870)

 <0.1   0.1-0.15
 0.15-0.2  0.2-0.25
 0.25-0.3  0.3<

(d) Far AS

0.05µm

0.10µm

0.15µm

0.2µm0.3µm
99%
90%

70%

50%

30%

10%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
-1.2
-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

αα αα
(4

40
-6

75
) 

- αα αα
(6

75
-8

70
)

αααα(440-870)

 <0.1   0.1-0.2
 0.2-0.3  0.3-0.4
 0.4-0.5  0.5<

(c) Mid AS

0.05µm

0.10µm

0.15µm

0.2µm0.3µm
99%
90%

70%

50%

30%

10%

Fig. 11. Ångstr̈om exponent difference,dα = α(440–675) –α(675–870), as a function of theα440−870and AOD500 (color scale) over whole
AS (a), coastal AS(b), mid AS (c), and far AS(d).

al., 2008) are in general agreement with the columnar ones
(our study), since in the same area AOD500 is low (Fig. 8
top panel),α high (Fig. 8 bottom panel) anda2 negative
(Fig. 10). Nair et al. (2008) also found high values of mass
concentration (∼30 µg m−3) in the northern AS (64–68◦ E,
19–22◦ N), which are mainly attributed to aerosol transport
from arid regions of West Asia, since the effective radius
was from about 0.3 to 0.4 and the fine-mode fraction below
0.5. The presence of large AOD550 associated with desert
particles (α<0.75,a2>0) was also revealed by our analysis
over this area. Finally, relative high aerosol-mass concentra-
tions (20±7 µg m−3) were measured along the West Indian
coast, mainly composed of anthropogenic emissions (Nair et
al., 2008). The present results also show increased AOD500
values over this region associated with urban/industrial pol-
lution transport over AS. A direct correlation between the
MABL aerosol characteristics (Nair et al., 2008) and colum-
nar ones (present study) will reveal heterogeneities in the
aerosol field in the vertical and constitute a real challenge.
However, the different air-mass origin between the lower and
upper atmospheric levels (not shown) may be the main rea-
son for any differences observed between MABL and colum-
nar aerosol characteristics.

Aerosols found over the oceans are mainly sea-salt parti-
cles, produced by the evaporating water droplets injected into
the atmosphere, and wind-blown dust, transported from the
surrounding landmasses. Over the pristine oceanic regions
the major contribution to the AOD is from sea salt and sulfate

from natural sources. The emission strength of these aerosols
is dependent strongly on the surface wind speed. Over the
northern IO it has been seen that sea salt and sulfate from
natural sources contribute less than 20% to the AODs (Ra-
manathan et al., 2001; Satheesh et al., 2002), while BC, fly
ash, dust, organics and anthropogenic sulfate contribute the
remaining 80% to the AOD. As mineral dust particles can be
transported over long distances, they can contribute signifi-
cantly to the aerosol mass in the marine atmosphere (Quinn
et al., 2002). Even though it is possible that the oceanic en-
vironment is less heterogeneous compared to the land one,
several studies have shown that the aerosol properties show
significant variations, even over reasonably small spatial and
temporal scales (e.g., Moorthy and Satheesh, 2000; Smirnov
et al., 2002). The present results highlight the large hetero-
geneities in the columnar aerosol characteristics over AS,
which are in general agreement with measurements in the
MABL.

8 Conclusions

Ship-borne sunphotometric measurements of spectral AOD
were performed over AS during the pre-monsoon season
(April–May 2006) in order to shed light on the spatio-
temporal aerosol heterogeneity. The present study provides
an extensive analysis regarding the errors and the uncertain-
ties in computing the aerosol optical properties. It was found
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that the use of the spectral band of 340–1020 nm for the poly-
nomial fit of lnτλ vs. lnλ gave more accurate results than
the respective of 340–870 nm. The spectral AOD andα val-
ues exhibited significant day-to-day variations along the ship
cruise mainly depending on the distance from the main land
masses, the air-mass origin and atmospheric dynamics. The
mean AOD500 was found to be 0.25±0.11 and theα340−1020
0.90±0.19. In the majority of the cases the coefficienta2
was negative, thus implying a concave-type curve indicative
of the higher presence of fine-mode aerosols. The data pre-
sented a strong latitudinal and longitudinal gradient in the
AOD and Ångstr̈om exponent. The AODs were found to
exhibit a steep gradient as the ship moved from the Indian
coast towards the pristine oceanic region, with higher values
near the coast and northern part of AS and very low values
in the central part of AS. The̊Angstr̈om exponent also ex-
hibited significant spatial variation, with the higher values
to be detected near the Indian coast and in the far AS. The
anthropogenic and urban activities along the densely popu-
lated western coast of India could be attributed to the for-
mer; the later arose from the strong vertical descent of rather
clean air, associated with low-level mid-ocean anticyclone,
which lead to faster depletion of coarse-mode particle con-
centration. Low values ofα associated with coarse-mode
arid aerosols were found in north AS. The present study was
the very first one providing the spatial distribution of the co-
efficientsa1 anda2 over AS even in two spectral bands. A
general agreement was found in the spatial distribution of
each coefficient determined in different wavelength bands,
despite some differences observed in the south AS. Posi-
tive values ofa2 (indicative of coarse-mode aerosols) were
mainly observed in the northern AS. Negativea2 values (fine-
mode aerosol abundance) were observed in the central and
far AS. In addition to the transport of dust from the arid West
Asian regions, convex curvature could also arise from the
presence of sea-salt particles as the measurements were con-
ducted over oceanic regions and from well-mixed aerosols
with significant contribution of coarse-mode. The compari-
son between MABL and columnar aerosol characteristics re-
vealed a general agreement in their spatial distribution over
AS.

The results indicated a relatively complicated aerosol mix-
ture of both industrial pollution and mineral dust. This war-
rants the need for careful measurements and analysis to dis-
criminate the dominance of specific aerosol types (e.g., an-
thropogenic aerosols, maritime particles, mineral dust) in the
AS. The combination of such particle types is highly vari-
able and makes attribution of the aerosol radiative properties
to specific aerosol types difficult to be detected without de-
tailed and precise measurements.
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