39 research outputs found

    Glutathione metabolism contributes to the induction of trained immunity

    Get PDF
    The innate immune system displays heterologous memory characteristics, which are characterized by stronger responses to a secondary challenge. This phenomenon termed trained immunity relies on epigenetic and metabolic rewiring of innate immune cells. As reactive oxygen species (ROS) production has been associated with the trained immunity phenotype, we hypothesized that the increased ROS levels and the main intracellular redox molecule glutathione play a role in the induction of trained immunity. Here we show that pharmacological inhibition of ROS in an in vitro model of trained immunity did not influence cell responsiveness; the modulation of glutathione levels reduced pro-inflammatory cytokine production in human monocytes. Single nucleotide polymorphisms (SNPs) in genes involved in glutathione metabolism were found to be associated with changes in pro-inflammatory cytokine production capacity upon trained immunity. Also, plasma glutathione concentrations were positively associated with ex vivo IL-1 beta production, a biomarker of trained immunity, produced by monocytes of BCG-vaccinated individuals. In conclusion, glutathione metabolism is involved in the induction of trained immunity, and future studies are warranted to explore its functional consequences in human diseases.Proteomic

    Stronger induction of trained immunity by mucosal BCG or MTBVAC vaccination compared to standard intradermal vaccination

    Get PDF
    Vierboom et al. demonstrate the induction of trained immunity in blood and bone marrow monocytes after vaccination with live attenuated TB vaccines in nonhuman primates. Mucosal respiratory delivery of BCG or MTBVAC induces trained immunity more efficiently compared to standard intradermal vaccination

    The role of the interleukin-1 family in trained immunity

    No full text
    Immunological memory was long considered a trait exclusive to cells of the adaptive immune system. However, recent studies have shown that after activation of the innate immune system, innate immune cells may undergo long-term functional reprogramming characterized by the ability to mount either a stronger or attenuated inflammatory response upon reactivation. This phenomenon, which has been termed trained immunity and is a de facto innate immune memory, is regulated by a network of integrated metabolic and epigenetic rewiring. The endogenous mediators that modulate trained immunity in the host are only partially understood, but increasing evidence supports the concept that the interleukin (IL)-1 family of cytokines plays an important role. In this review, we will highlight key findings from studies that provide insight into the multifaceted roles of members of the IL-1 family for trained immunity. Finally, we will discuss how the recent advances of our understanding on the role of IL-1 cytokines in this field may lead to new therapeutic strategies for treatment of common conditions, such as IL-1-driven autoinflammatory diseases

    Non-specific effects of BCG vaccine on viral infections

    No full text
    Item does not contain fulltextBACKGROUND: Some strains of Bacillus Calmette-Guerin (BCG) vaccine not only confer protection against disseminated forms of tuberculosis, but also reduce all-cause mortality by the induction of protection against infections with non-related pathogens. OBJECTIVES: We review evidence for non-specific protection induced by BCG vaccination against viral infections, discuss possible mechanisms of action, and summarize implications for vaccination policies and vaccine discovery. SOURCES: Relevant studies retrieved from PubMed and clinicaltrials.gov. CONTENT: Numerous epidemiological, clinical and immunological studies demonstrate that BCG vaccination impacts the immune response to subsequent infections, resulting in reduced morbidity and mortality. Important lines of evidence indicating that BCG protects against viral pathogens comes from experimental studies in mice showing that BCG offers protection against various DNA and RNA viruses, including herpes and influenza viruses. Recently, the effect of BCG on an experimental viral infection in humans has been demonstrated. These effects are thought to be mediated via the induction of innate immune memory and heterologous lymphocyte activation, resulting in enhanced cytokine production, macrophage activity, T-cell responses and antibody titres. IMPLICATIONS: The discovery of innate immune memory has greatly improved our understanding of the mechanisms underlying the non-specific effects induced by BCG vaccination. However, a full understanding of the molecular mechanisms that underlie this phenomenon is still evolving. By identifying the factors that impact the non-specific effects of BCG, we will take an important step towards novel therapeutic options and vaccination strategies, which might lead to a reduction in severe morbidity and mortality associated with viral infections

    Shifting the Immune Memory Paradigm: Trained Immunity in Viral Infections

    No full text
    Trained immunity is defined as the de facto memory characteristics induced in innate immune cells after exposure to microbial stimuli after infections or certain types of vaccines. Through epigenetic and metabolic reprogramming of innate immune cells after exposure to these stimuli, trained immunity induces an enhanced nonspecific protection by improving the inflammatory response upon restimulation with the same or different pathogens. Recent studies have increasingly shown that trained immunity can, on the one hand, be induced by exposure to viruses; on the other hand, when induced, it can also provide protection against heterologous viral infections. In this review we explore current knowledge on trained immunity and its relevance for viral infections, as well as its possible future uses

    The influence of the gut microbiome on BCG-induced trained immunity

    Get PDF
    Contains fulltext : 238095.pdf (Publisher’s version ) (Open Access
    corecore