2,002 research outputs found

    The stratigraphy, correlation, provenance and palaeogeography of the Skiddaw Group (Ordovician) in the English Lake District

    Get PDF
    A new lithostratigraphy is presented for the Skiddaw Group (lower Ordovician) of the English Lake District. Two stratigraphical belts are described. Five formations are defined in the Northern Fells Belt, ranging in age from Tremadoc to early Llanvirn. They are all mudstone or sandstone dominated, of turbidite origin; in ascending order they are named the Bitter Beck, Watch Hill, Hope Beck, Loweswater and Kirk Stile formations. Two formations are defined in the Central Fells Belt, ranging in age from late Arenig to Llanvirn. These are the Buttermere Formation - a major olistostrome deposit - overlain by the Tarn Moor Formation, consisting of turbidite mudstones with volcaniclastic turbidite sandstone beds. A revised graptolite and new acritarch biostratigraphy for the Skiddaw Group is presented with eight graptolite biozones and thirteen acritarch assemblages and sub-assemblages. The provenance of the group is assessed from detailed petrographical and geochemical work. This suggests derivation, in the early Ordovician, largely from an old inactive continental arc terrane lying to the south-east, with the appearance of juvenile volcanic material in the Llanvirn. Comparisons and correlations of the Skiddaw Group are made with the Isle of Man and eastern Ireland

    An assessment of the precise products on static Precise Point Positioning using Multi-Constellation GNSS

    Get PDF
    Precise point positioning (PPP) is highly dependent on the precise ephemerides and satellite clock products that are used. Different ephemeris and clock products are available from a variety of different organizations. The aim of this paper is to assess the achievable static positioning accuracy and precision when using different precise ephemerides from three analysis centres Natural Resources Canada (EMX), European Space Agency (ESA) and GeoForschungsZentrum (GFZ), using GPS alone, GLONASS alone, and GPS and GLONASS combined. It will be shown in this paper that the precise products are significantly affected by the time-base of the reference stations, and that this is propagated through to all the estimated satellite clocks. In order to overcome the combined biases in the estimated satellite clock, in the PPP processing, these clocks errors need to be handled with an appropriate variation in the estimated receiver clock. It will also be shown that the precise coordinates of the satellites differ between the analysis centres, and this affects the PPP position estimation at the millimetre level. However, all those products will be shown to result in the same level of precision for all coordinate components and are equivalent to the horizontal precision from a Global Double Difference (GDD) solution. For the horizontal coordinate component, the level of agreement between the PPP solutions, and with the GDD solution, is at the millimetre level. There is a notable, but small, bias in the north coordinate components of the PPP solutions, from the corresponding north component of the GDD solutions. It is shown that this difference is due to the different strategy adopted for the GDD and PPP solutions, with PPP being more affected by the changing satellite systems. The precision of the heights of the receiver sites will be shown to be almost the same across all the PPP scenarios, with all three products. Finally, it will be concluded that accuracy of the height component is system dependent and is related to the behaviour of antenna phase centre with the different constellation type

    Gravitation Physics at BGPL

    Get PDF
    We report progress on a program of gravitational physics experiments using cryogenic torsion pendula undergoing large-amplitude torsion oscillation. This program includes tests of the gravitational inverse square law and of the weak equivalence principle. Here we describe our ongoing search for inverse-square-law violation at a strength down to 10510^{-5} of standard gravity. The low-vibration environment provided by the Battelle Gravitation Physics Laboratory (BGPL) is uniquely suited to this study.Comment: To be published in The Proceedings of the Francesco Melchiorri Memorial Conference as a special issue of New Astronomy Review

    Generating a checking sequence with a minimum number of reset transitions

    Get PDF
    Given a finite state machine M, a checking sequence is an input sequence that is guaranteed to lead to a failure if the implementation under test is faulty and has no more states than M. There has been much interest in the automated generation of a short checking sequence from a finite state machine. However, such sequences can contain reset transitions whose use can adversely affect both the cost of applying the checking sequence and the effectiveness of the checking sequence. Thus, we sometimes want a checking sequence with a minimum number of reset transitions rather than a shortest checking sequence. This paper describes a new algorithm for generating a checking sequence, based on a distinguishing sequence, that minimises the number of reset transitions used.This work was supported in part by Leverhulme Trust grant number F/00275/D, Testing State Based Systems, Natural Sciences and Engineering Research Council (NSERC) of Canada grant number RGPIN 976, and Engineering and Physical Sciences Research Council grant number GR/R43150, Formal Methods and Testing (FORTEST)

    Secondary Electron Yield Measurements of Fermilab's Main Injector Vacuum Vessel

    Full text link
    We discuss the progress made on a new installation in Fermilab's Main Injector that will help investigate the electron cloud phenomenon by making direct measurements of the secondary electron yield (SEY) of samples irradiated in the accelerator. In the Project X upgrade the Main Injector will have its beam intensity increased by a factor of three compared to current operations. This may result in the beam being subject to instabilities from the electron cloud. Measured SEY values can be used to further constrain simulations and aid our extrapolation to Project X intensities. The SEY test-stand, developed in conjunction with Cornell and SLAC, is capable of measuring the SEY from samples using an incident electron beam when the samples are biased at different voltages. We present the design and manufacture of the test-stand and the results of initial laboratory tests on samples prior to installation.Comment: 3 pp. 3rd International Particle Accelerator Conference (IPAC 2012) 20-25 May 2012, New Orleans, Louisian

    Statistical and Dynamical Study of Disease Propagation in a Small World Network

    Full text link
    We study numerically statistical properties and dynamical disease propagation using a percolation model on a one dimensional small world network. The parameters chosen correspond to a realistic network of school age children. We found that percolation threshold decreases as a power law as the short cut fluctuations increase. We found also the number of infected sites grows exponentially with time and its rate depends logarithmically on the density of susceptibles. This behavior provides an interesting way to estimate the serology for a given population from the measurement of the disease growing rate during an epidemic phase. We have also examined the case in which the infection probability of nearest neighbors is different from that of short cuts. We found a double diffusion behavior with a slower diffusion between the characteristic times.Comment: 12 pages LaTex, 10 eps figures, Phys.Rev.E Vol. 64, 056115 (2001

    An accelerator mode based technique for studying quantum chaos

    Get PDF
    We experimentally demonstrate a method for selecting small regions of phase space for kicked rotor quantum chaos experiments with cold atoms. Our technique uses quantum accelerator modes to selectively accelerate atomic wavepackets with localized spatial and momentum distributions. The potential used to create the accelerator mode and subsequently realize the kicked rotor system is formed by a set of off-resonant standing wave light pulses. We also propose a method for testing whether a selected region of phase space exhibits chaotic or regular behavior using a Ramsey type separated field experiment.Comment: 5 pages, 3 figures, some modest revisions to previous version (esp. to the figures) to aid clarity; accepted for publication in Physical Review A (due out on January 1st 2003

    Percolation on two- and three-dimensional lattices

    Full text link
    In this work we apply a highly efficient Monte Carlo algorithm recently proposed by Newman and Ziff to treat percolation problems. The site and bond percolation are studied on a number of lattices in two and three dimensions. Quite good results for the wrapping probabilities, correlation length critical exponent and critical concentration are obtained for the square, simple cubic, HCP and hexagonal lattices by using relatively small systems. We also confirm the universal aspect of the wrapping probabilities regarding site and bond dilution.Comment: 15 pages, 6 figures, 3 table

    Global Charges in Chern-Simons theory and the 2+1 black hole

    Full text link
    We use the Regge-Teitelboim method to treat surface integrals in gauge theories to find global charges in Chern-Simons theory. We derive the affine and Virasoro generators as global charges associated with symmetries of the boundary. The role of boundary conditions is clarified. We prove that for diffeomorphisms that do not preserve the boundary there is a classical contribution to the central charge in the Virasoro algebra. The example of anti-de Sitter 2+1 gravity is considered in detail.Comment: Revtex, no figures, 26 pages. Important changes introduced. One section added
    corecore