363 research outputs found
Preventie van preferente stroming in de zandgrond van een golfbaan
Veel zandbovengronden met een grasvegetatie hebben waterafstotende eigenschappen. Deze hydrofobe eigenschappen komen naar voren als het vochtgehalte van de grond beneden een kritieke grens daalt. Na het bereiken van deze grens zal de infiltratiesnelheid van neerslag en beregeningswater sterk afnemen. De indringing van het water gaat dan ongelijkmatig en er ontstaan preferente stroombanen in de grond. Op golfbaan "De Pan" in Bosch en Duin onderzochten we de effecten van het toedienen van een surfactant op de bevochtiging en de variatie van het vochtgehalte van de toplaag in een fairwa
A Farewell to Liouvillians
We examine the Liouvillian approach to the quantum Hall plateau transition,
as introduced recently by Sinova, Meden, and Girvin [Phys. Rev. B {\bf 62},
2008 (2000)] and developed by Moore, Sinova and Zee [Phys. Rev. Lett. {\bf 87},
046801 (2001)]. We show that, despite appearances to the contrary, the
Liouvillian approach is not specific to the quantum mechanics of particles
moving in a single Landau level: we formulate it for a general disordered
single-particle Hamiltonian. We next examine the relationship between
Liouvillian perturbation theory and conventional calculations of
disorder-averaged products of Green functions and show that each term in
Liouvillian perturbation theory corresponds to a specific contribution to the
two-particle Green function. As a consequence, any Liouvillian approximation
scheme may be re-expressed in the language of Green functions. We illustrate
these ideas by applying Liouvillian methods, including their extension to Liouvillian flavors, to random matrix ensembles, using numerical
calculations for small integer and an analytic analysis for large .
We find that behavior at is different in qualitative ways from that
at . In particular, the limit expressed using Green
functions generates a pathological approximation, in which two-particle
correlation functions fail to factorize correctly at large separations of their
energy, and exhibit spurious singularities inside the band of random matrix
energy levels. We also consider the large treatment of the quantum Hall
plateau transition, showing that the same undesirable features are present
there, too
Recent results from parton cascade and microscopic transport
Parton cascade is a microscopic transport approach for the study of the
space-time evolution of the Quark-Gluon Plasma produced in relativistic heavy
ion collisions and its experimental manifestations. In the following, parton
cascade calculations on elliptic flow and thermalization will be discussed.
Dynamical evolution is shown to be important for the production of elliptic
flow including the scaling and the breaking of the scaling of elliptic flow.
The degree of thermalization is estimated using both an elastic parton cascade
and a radiative transport model. A longitudinal to transverse pressure ratio,
, is shown to be expected in the central cell in central
collisions. This provides information on viscous corrections to the ideal
hydrodynamical approach.Comment: Presented at Hot Quarks 2008, Estes Park, Colorado, USA, 18-23 August
200
Precise calculation of parity nonconservation in cesium and test of the standard model
We have calculated the 6s-7s parity nonconserving (PNC) E1 transition
amplitude, E_{PNC}, in cesium. We have used an improved all-order technique in
the calculation of the correlations and have included all significant
contributions to E_{PNC}. Our final value E_{PNC} = 0.904 (1 +/- 0.5 %) \times
10^{-11}iea_{B}(-Q_{W}/N) has half the uncertainty claimed in old calculations
used for the interpretation of Cs PNC experiments. The resulting nuclear weak
charge Q_{W} for Cs deviates by about 2 standard deviations from the value
predicted by the standard model.Comment: 24 pages, 8 figure
A Quantitative Model of Energy Release and Heating by Time-dependent, Localized Reconnection in a Flare with a Thermal Loop-top X-ray Source
We present a quantitative model of the magnetic energy stored and then
released through magnetic reconnection for a flare on 26 Feb 2004. This flare,
well observed by RHESSI and TRACE, shows evidence of non-thermal electrons only
for a brief, early phase. Throughout the main period of energy release there is
a super-hot (T>30 MK) plasma emitting thermal bremsstrahlung atop the flare
loops. Our model describes the heating and compression of such a source by
localized, transient magnetic reconnection. It is a three-dimensional
generalization of the Petschek model whereby Alfven-speed retraction following
reconnection drives supersonic inflows parallel to the field lines, which form
shocks heating, compressing, and confining a loop-top plasma plug. The
confining inflows provide longer life than a freely-expanding or
conductively-cooling plasma of similar size and temperature. Superposition of
successive transient episodes of localized reconnection across a current sheet
produces an apparently persistent, localized source of high-temperature
emission. The temperature of the source decreases smoothly on a time scale
consistent with observations, far longer than the cooling time of a single
plug. Built from a disordered collection of small plugs, the source need not
have the coherent jet-like structure predicted by steady-state reconnection
models. This new model predicts temperatures and emission measure consistent
with the observations of 26 Feb 2004. Furthermore, the total energy released by
the flare is found to be roughly consistent with that predicted by the model.
Only a small fraction of the energy released appears in the super-hot source at
any one time, but roughly a quarter of the flare energy is thermalized by the
reconnection shocks over the course of the flare. All energy is presumed to
ultimately appear in the lower-temperature T<20 MK, post-flare loops
Tidal Dwarf Galaxies at Intermediate Redshifts
We present the first attempt at measuring the production rate of tidal dwarf
galaxies (TDGs) and estimating their contribution to the overall dwarf
population. Using HST/ACS deep imaging data from GOODS and GEMS surveys in
conjunction with photometric redshifts from COMBO-17 survey, we performed a
morphological analysis for a sample of merging/interacting galaxies in the
Extended Chandra Deep Field South and identified tidal dwarf candidates in the
rest-frame optical bands. We estimated a production rate about 1.4 {\times}
10^{-5} per Gyr per comoving volume for long-lived TDGs with stellar mass 3
{\times} 10^{8-9} solar mass at 0.5<z<1.1. Together with galaxy merger rates
and TDG survival rate from the literature, our results suggest that only a
marginal fraction (less than 10%) of dwarf galaxies in the local universe could
be tidally-originated. TDGs in our sample are on average bluer than their host
galaxies in the optical. Stellar population modelling of optical to
near-infrared spectral energy distributions (SEDs) for two TDGs favors a burst
component with age 400/200 Myr and stellar mass 40%/26% of the total,
indicating that a young stellar population newly formed in TDGs. This is
consistent with the episodic star formation histories found for nearby TDGs.Comment: 9 pages, 5 figures, Accepted for publication in Astrophysics & Space
Scienc
Anomalous Heat Conduction and Anomalous Diffusion in Low Dimensional Nanoscale Systems
Thermal transport is an important energy transfer process in nature. Phonon
is the major energy carrier for heat in semiconductor and dielectric materials.
In analogy to Ohm's law for electrical conductivity, Fourier's law is a
fundamental rule of heat transfer in solids. It states that the thermal
conductivity is independent of sample scale and geometry. Although Fourier's
law has received great success in describing macroscopic thermal transport in
the past two hundreds years, its validity in low dimensional systems is still
an open question. Here we give a brief review of the recent developments in
experimental, theoretical and numerical studies of heat transport in low
dimensional systems, include lattice models, nanowires, nanotubes and
graphenes. We will demonstrate that the phonon transports in low dimensional
systems super-diffusively, which leads to a size dependent thermal
conductivity. In other words, Fourier's law is breakdown in low dimensional
structures
Measurement of the Lifetime of the Tau Lepton
The tau lepton lifetime is measured with the L3 detector at LEP using the
complete data taken at centre-of-mass energies around the Z pole resulting in
tau_tau = 293.2 +/- 2.0 (stat) +/- 1.5 (syst) fs. The comparison of this result
with the muon lifetime supports lepton universality of the weak charged current
at the level of six per mille. Assuming lepton universality, the value of the
strong coupling constant, alpha_s is found to be alpha_s(m_tau^2) = 0.319 +/-
0.015(exp.) +/- 0.014 (theory)
Measurement of the Tau Branching Fractions into Leptons
Using data collected with the L3 detector near the Z resonance, corresponding
to an integrated luminosity of 150pb-1, the branching fractions of the tau
lepton into electron and muon are measured to be
B(tau->e nu nu) = (17.806 +- 0.104 (stat.) +- 0.076 (syst.)) %,
B(tau->mu nu nu) = (17.342 +- 0.110 (stat.) +- 0.067 (syst.)) %.
From these results the ratio of the charged current coupling constants of the
muon and the electron is determined to be g_mu/g_e = 1.0007 +- 0.0051. Assuming
electron-muon universality, the Fermi constant is measured in tau lepton decays
as G_F = (1.1616 +- 0.0058) 10^{-5} GeV^{-2}. Furthermore, the coupling
constant of the strong interaction at the tau mass scale is obtained as
alpha_s(m_tau^2) = 0.322 +- 0.009 (exp.) +- 0.015 (theory)
Measurement of the Topological Branching Fractions of the tau lepton at LEP
Using data collected with the L3 detector at LEP from 1992 to 1995 on the Z
peak, we determine the branching fractions of the tau lepton into one, three
and five charged particles to be:
B(tau->(1-prong)) = 85.274 +- 0.105 +- 0.073 %,
B(tau->(3-prong)) = 14.556 +- 0.105 +- 0.076 %,
B(tau->(5-prong)) = 0.170 +- 0.022 +- 0.026 %.
The first uncertainties are statistical and the second systematic. The
accuracy of these measurements alone is similar to that of the current world
average
- …