59,301 research outputs found

    Preference for Some Nursery-grown Hybrid \u3ci\u3ePopulus\u3c/i\u3e Trees by the Spotted Poplar Aphid and Its Suppression by Insecticidal Soaps (Homoptera: Aphididae)

    Get PDF
    Susceptibility ranking of more than 50 clones of hybrid Populus whips showed a wide range of attack ranging from none to very heavy. Clones with P. x jackii parentage were the most susceptible, whereas Carolina poplar was unscathed. Growth loss differed little between very heavily aphid-attacked whips and unattacked whips. Two insecticidal soaps adequately controlled the aphid but one caused some phytotoxicity to Populus

    Impact of the Poplar-Gall Saperda, \u3ci\u3eSaperda Inornata\u3c/i\u3e (Coleoptera: Cerambycidae) on a Hybrid \u3ci\u3ePopulus\u3c/i\u3e Plantation in Michigan

    Get PDF
    Saperda inornata attacks on hybrid Populus were monitored in a stand for four years after planting. More than 60% of the whips were attacked the first year, resulting in a mean of 1.6 galls/tree (range 0-8). Branch attacks superseded stem attacks in the third and fourth years. Saperda injury significantly reduced height because of leader breakage after the second-year attacks, but the injured trees grew rapidly and recovered much of the height in the third and fourth years. Saperdas killed 4% of the trees during the study, but this was no more than would be expected in a newly established stand. Saperda, at the population levels studied, does not seem to greatly affect hybrid Populus growth or to reduce biomass

    An experimental study of a self-confined flow with ring-vorticity distribution

    Get PDF
    A new form of self-confined flow was investigated in which a recirculation zone forms away from any solid boundary. An inviscid flow analysis indicated that in a purely meridional axisymmetric flow a stationary, spherical, self-confined region should occur in the center of a streamlined divergent-convergent enlargement zone. The spherical confinement region would be at rest and at constant pressure. Experimental investigations were carried out in a specially built test apparatus to establish the desired confined flow. The streamlined divergent-convergent interior shape of the test section was fabricated according to the theoretical calculation for a particular streamline. The required inlet vorticity distribution was generated by producing a velocity profile with a shaped gauze screen in the straight pipe upstream of the test section. Fluid speed and turbulence intensity were measured with a constant-temperature hot-wire anemometer system. The measured results indicated a very orderly and stable flow field

    A theory of post-stall transients in multistage axial compression systems

    Get PDF
    A theory is presented for post stall transients in multistage axial compressors. The theory leads to a set of coupled first-order ordinary differential equations capable of describing the growth and possible decay of a rotating-stall cell during a compressor mass-flow transient. These changing flow features are shown to have a significant effect on the instantaneous compressor pumping characteristic during unsteady operation, and henace on the overall system behavior. It is also found from the theory that the ultimate mode of system response, stable rotating stall or surge, depends not only on the B parameter but also on other parameters, such as the compressor length-to-diameter ratio. Small values of this latter quantity tend to favor the occurrence of surge, as do large values of B. A limited parametric study is carried out to show the impact of the different system features on transient behavior. Based on analytical and numerical results, several specific topics are suggested for future research on post-stall transients

    Planning Guide Outdoor Recreation Facilities

    Get PDF
    PDF pages: 1

    Parallel Metric Tree Embedding based on an Algebraic View on Moore-Bellman-Ford

    Full text link
    A \emph{metric tree embedding} of expected \emph{stretch~α1\alpha \geq 1} maps a weighted nn-node graph G=(V,E,ω)G = (V, E, \omega) to a weighted tree T=(VT,ET,ωT)T = (V_T, E_T, \omega_T) with VVTV \subseteq V_T such that, for all v,wVv,w \in V, dist(v,w,G)dist(v,w,T)\operatorname{dist}(v, w, G) \leq \operatorname{dist}(v, w, T) and operatornameE[dist(v,w,T)]αdist(v,w,G)operatorname{E}[\operatorname{dist}(v, w, T)] \leq \alpha \operatorname{dist}(v, w, G). Such embeddings are highly useful for designing fast approximation algorithms, as many hard problems are easy to solve on tree instances. However, to date the best parallel (polylogn)(\operatorname{polylog} n)-depth algorithm that achieves an asymptotically optimal expected stretch of αO(logn)\alpha \in \operatorname{O}(\log n) requires Ω(n2)\operatorname{\Omega}(n^2) work and a metric as input. In this paper, we show how to achieve the same guarantees using polylogn\operatorname{polylog} n depth and O~(m1+ϵ)\operatorname{\tilde{O}}(m^{1+\epsilon}) work, where m=Em = |E| and ϵ>0\epsilon > 0 is an arbitrarily small constant. Moreover, one may further reduce the work to O~(m+n1+ϵ)\operatorname{\tilde{O}}(m + n^{1+\epsilon}) at the expense of increasing the expected stretch to O(ϵ1logn)\operatorname{O}(\epsilon^{-1} \log n). Our main tool in deriving these parallel algorithms is an algebraic characterization of a generalization of the classic Moore-Bellman-Ford algorithm. We consider this framework, which subsumes a variety of previous "Moore-Bellman-Ford-like" algorithms, to be of independent interest and discuss it in depth. In our tree embedding algorithm, we leverage it for providing efficient query access to an approximate metric that allows sampling the tree using polylogn\operatorname{polylog} n depth and O~(m)\operatorname{\tilde{O}}(m) work. We illustrate the generality and versatility of our techniques by various examples and a number of additional results

    Resolving the Structure of Cold Dark Matter Halos

    Get PDF
    We examine the effects of mass resolution and force softening on the density profiles of cold dark matter halos that form within cosmological N-body simulations. As we increase the mass and force resolution, we resolve progenitor halos that collapse at higher redshifts and have very high densities. At our highest resolution we have nearly 3 million particles within the virial radius, several orders of magnitude more than previously used and we can resolve more than one thousand surviving dark matter halos within this single virialised system. The halo profiles become steeper in the central regions and we may not have achieved convergence to a unique slope within the inner 10% of the virialised region. Results from two very high resolution halo simulations yield steep inner density profiles, ρ(r)r1.4\rho(r)\sim r^{-1.4}. The abundance and properties of arcs formed within this potential will be different from calculations based on lower resolution simulations. The kinematics of disks within such a steep potential may prove problematic for the CDM model when compared with the observed properties of halos on galactic scales.Comment: Final version, to be published in the ApJLetter

    Theory of superradiant scattering of laser light from Bose-Einstein condensates

    Full text link
    In a recent MIT experiment, a new form of superradiant Rayleigh scattering was observed in Bose-Einstein condensates. We present a detailed theory of this phenomena in which the directional dependence of the scattering rate and condensate depletion lead to mode competition which is ultimately responsible for superradiance. The nonlinear response of the system is highly sensitive to initial quantum fluctuations which cause large run to run variations in the observed superradiant pulses.Comment: Updated version with new figures,a numerical simulation with realistic experimental parameters is now included. Featured in September 1999 Physics Today, in Search and Discovery sectio

    Space shuttle: Supersonic aerodynamic characteristics of the MSC 040A orbiter (M equals 2.0 to 4.0)

    Get PDF
    A wind tunnel test of the space shuttle orbiter configuration 040A was run in a 20 in. supersonic wind tunnel. Basic aerodynamic data for this vehicle were determined at Mach 2.0, 2.4, 3.0 and 4.0

    Effect of aerobic capacity on Lower Body Negative Pressure (LBNP) tolerance in females

    Get PDF
    This investigation determined whether a relationship exists in females between: (1) aerobic capacity and Lower Body Negative Pressure (LBNP); and (2) aerobic capacity and change in LBNP tolerance induced by bed rest. Nine females, age 27-47 (34.6 plus or minus 6.0 (Mean plus or minus SD)), completed a treadmill-graded exercise test to establish aerobic capacity. A presyncopal-limited LBNP test was performed prior to and after 13 days of bed rest at a 6 deg head-down tilt. LBNP tolerance was quantified as: (1) the absolute level of negative pressure (NP) tolerated for greater than or equal to 60 sec; and (2) Luft's Cumulative Stress Index (CSI). Aerobic capacity was 33.3 plus or minus 5.0 mL/kg/min and ranged from 25.7 to 38.7. Bed rest was associated with a decrease in NP tolerance (-9.04 1.6 kPa(-67.8 plus or minus 12.0 mmHg) versus -7.7 1.1 kPa(-57.8 plus or minus 8.33 mmHg); p = 0.028) and in CSI (99.4 27.4 kPa min(745.7 plus or minus 205.4 mmHg min) versus 77.0 16.9 kPa min (577.3 plus or minus mmHg min); p = 0.008). The correlation between aerobic capacity and absolute NP or CSI pre-bed rest did not differ significantly from zero (r = -0.56, p = 0.11 for NP; and r = -0.52, p = 0.16 for CSI). Also, no significant correlation was observed between aerobic and pre- to post-rest change for absolute NP tolerance (r = -0.35, p = 0.35) or CSI (r = -0.32, p = 0.40). Therefore, a significant relationship does not exist between aerobic capacity and orthostatic function or change in orthostatic function induced by bed rest
    corecore