6,766 research outputs found
Retinal Architecture in \u3cem\u3eRGS9-\u3c/em\u3e and \u3cem\u3eR9AP\u3c/em\u3e-Associated Retinal Dysfunction (Bradyopsia)
Purpose To characterize photoreceptor structure and mosaic integrity in subjects with RGS9- and R9AP-associated retinal dysfunction (bradyopsia) and compare to previous observations in other cone dysfunction disorders such as oligocone trichromacy. Design Observational case series. Methods setting: Moorfields Eye Hospital (United Kingdom) and Medical College Wisconsin (USA). study population: Six eyes of 3 subjects with disease-causing variants in RGS9 or R9AP. main outcome measures: Detailed retinal imaging using spectral-domain optical coherence tomography and confocal adaptive-optics scanning light ophthalmoscopy. Results Cone density at 100 μm from foveal center ranged from 123 132 cones/mm2to 140 013 cones/mm2. Cone density ranged from 30 573 to 34 876 cones/mm2 by 600 μm from center and from 15 987 to 16,253 cones/mm2 by 1400 μm from center, in keeping with data from normal subjects. Adaptive-optics imaging identified a small, focal hyporeflective lesion at the foveal center in both eyes of the subject with RGS9-associated disease, corresponding to a discrete outer retinal defect also observed on spectral-domain optical coherence tomography; however, the photoreceptor mosaic remained intact at all other observed eccentricities. Conclusions Bradyopsia and oligocone trichromacy share common clinical symptoms and cannot be discerned on standard clinical findings alone. Adaptive-optics imaging previously demonstrated a sparse mosaic of normal wave-guiding cones remaining at the fovea, with no visible structure outside the central fovea in oligocone trichromacy. In contrast, the subjects presented in this study with molecularly confirmed bradyopsia had a relatively intact and structurally normal photoreceptor mosaic, allowing the distinction between these disorders based on the cellular phenotype and suggesting different pathomechanisms
Global Charges in Chern-Simons theory and the 2+1 black hole
We use the Regge-Teitelboim method to treat surface integrals in gauge
theories to find global charges in Chern-Simons theory. We derive the affine
and Virasoro generators as global charges associated with symmetries of the
boundary. The role of boundary conditions is clarified. We prove that for
diffeomorphisms that do not preserve the boundary there is a classical
contribution to the central charge in the Virasoro algebra. The example of
anti-de Sitter 2+1 gravity is considered in detail.Comment: Revtex, no figures, 26 pages. Important changes introduced. One
section added
Exceptional sperm cooperation in the wood mouse
Spermatozoa from a single male will compete for fertilization of ova with spermatozoa from another male when present in the female reproductive tract at the same time. Close genetic relatedness predisposes individuals towards altruism, and as haploid germ cells of an ejaculate will have genotypic similarity of 50%, it is predicted that spermatozoa may display cooperation and altruism to gain an advantage when inter-male sperm competition is intense. We report here the probable altruistic behaviour of spermatozoa in an eutherian mammal. Spermatozoa of the common wood mouse, Apodemus sylvaticus, displayed a unique morphological transformation resulting in cooperation in distinctive aggregations or 'trains' of hundreds or thousands of cells, which significantly increased sperm progressive motility. Eventual dispersal of sperm trains was associated with most of the spermatozoa undergoing a premature acrosome reaction. Cells undergoing an acrosome reaction in aggregations remote from the egg are altruistic in that they help sperm transport to the egg but compromise their own fertilizing ability
A broad distribution of the alternative oxidase in microsporidian parasites
Microsporidia are a group of obligate intracellular parasitic eukaryotes that were considered to be amitochondriate until the recent discovery of highly reduced mitochondrial organelles called mitosomes. Analysis of the complete genome of Encephalitozoon cuniculi revealed a highly reduced set of proteins in the organelle, mostly related to the assembly of ironsulphur clusters. Oxidative phosphorylation and the Krebs cycle proteins were absent, in keeping with the notion that the microsporidia and their mitosomes are anaerobic, as is the case for other mitosome bearing eukaryotes, such as Giardia. Here we provide evidence opening the possibility that mitosomes in a number of microsporidian lineages are not completely anaerobic. Specifically, we have identified and characterized a gene encoding the alternative oxidase (AOX), a typically mitochondrial terminal oxidase in eukaryotes, in the genomes of several distantly related microsporidian species, even though this gene is absent from the complete genome of E. cuniculi. In order to confirm that these genes encode functional proteins, AOX genes from both A. locustae and T. hominis were over-expressed in E. coli and AOX activity measured spectrophotometrically using ubiquinol-1 (UQ-1) as substrate. Both A. locustae and T. hominis AOX proteins reduced UQ-1 in a cyanide and antimycin-resistant manner that was sensitive to ascofuranone, a potent inhibitor of the trypanosomal AOX. The physiological role of AOX microsporidia may be to reoxidise reducing equivalents produced by glycolysis, in a manner comparable to that observed in trypanosome
The Statistical Mechanics of the (2+1)-Dimensional Black Hole
The presence of a horizon breaks the gauge invariance of (2+1)-dimensional
general relativity, leading to the appearance of new physical states at the
horizon. I show that the entropy of the (2+1)-dimensional black hole can be
obtained as the logarithm of the number of these microscopic states.Comment: 12 pages, UCD-94-32 and NI-9401
The space group classification of topological band insulators
Topological band insulators (TBIs) are bulk insulating materials which
feature topologically protected metallic states on their boundary. The existing
classification departs from time-reversal symmetry, but the role of the crystal
lattice symmetries in the physics of these topological states remained elusive.
Here we provide the classification of TBIs protected not only by time-reversal,
but also by crystalline symmetries. We find three broad classes of topological
states: (a) Gamma-states robust against general time-reversal invariant
perturbations; (b) Translationally-active states protected from elastic
scattering, but susceptible to topological crystalline disorder; (c) Valley
topological insulators sensitive to the effects of non-topological and
crystalline disorder. These three classes give rise to 18 different
two-dimensional, and, at least 70 three-dimensional TBIs, opening up a route
for the systematic search for new types of TBIs.Comment: Accepted in Nature Physic
Topological Crystalline Insulators in the SnTe Material Class
Topological crystalline insulators are new states of matter in which the
topological nature of electronic structures arises from crystal symmetries.
Here we predict the first material realization of topological crystalline
insulator in the semiconductor SnTe, by identifying its nonzero topological
index. We predict that as a manifestation of this nontrivial topology, SnTe has
metallic surface states with an even number of Dirac cones on high-symmetry
crystal surfaces such as {001}, {110} and {111}. These surface states form a
new type of high-mobility chiral electron gas, which is robust against disorder
and topologically protected by reflection symmetry of the crystal with respect
to {110} mirror plane. Breaking this mirror symmetry via elastic strain
engineering or applying an in-plane magnetic field can open up a continuously
tunable band gap on the surface, which may lead to wide-ranging applications in
thermoelectrics, infrared detection, and tunable electronics. Closely related
semiconductors PbTe and PbSe also become topological crystalline insulators
after band inversion by pressure, strain and alloying.Comment: submitted on Feb. 10, 2012; to appear in Nature Communications; 5
pages, 4 figure
Excluding Electroweak Baryogenesis in the MSSM
In the context of the MSSM the Light Stop Scenario (LSS) is the only region
of parameter space that allows for successful Electroweak Baryogenesis (EWBG).
This possibility is very phenomenologically attractive, since it allows for the
direct production of light stops and could be tested at the LHC. The ATLAS and
CMS experiments have recently supplied tantalizing hints for a Higgs boson with
a mass of ~ 125 GeV. This Higgs mass severely restricts the parameter space of
the LSS, and we discuss the specific predictions made for EWBG in the MSSM.
Combining data from all the available ATLAS and CMS Higgs searches reveals a
tension with the predictions of EWBG even at this early stage. This allows us
to exclude EWBG in the MSSM at greater than (90) 95% confidence level in the
(non-)decoupling limit, by examining correlations between different Higgs decay
channels. We also examine the exclusion without the assumption of a ~ 125 GeV
Higgs. The Higgs searches are still highly constraining, excluding the entire
EWBG parameter space at greater than 90% CL except for a small window of m_h ~
117 - 119 GeV.Comment: 24 Pages, 4 Figures (v3: fixed typos, minor corrections, added
references
Identification of capacity development indicators for faculty development programs: A nominal group technique study.
BackgroundAlthough there have been many research studies of the effectiveness of faculty development in health profession education, the contribution of these programs to organizational development through capacity development has not been studied. Further understanding of capacity development requires appropriate indicators and no previous indicators for faculty development of health profession educators were identified. The aim of the study was to identify indicators of capacity development in the context of faculty development programs at Tehran University of medical sciences (TUMS).MethodsA nominal group technique session was conducted with key informants from faculty development program providers to generate and prioritize a list of capacity development indicators.ResultsA list of 26 indicators was generated and five categories were identified: Development and innovation in teaching and learning process, Development and innovation in communication and collaboration at different levels, Development and sustaining faculty development programs, Development of educational leadership and management, Development in scholarship.ConclusionsCapacity development for faculty development interventions of health profession educators is a process of engagement within a wider system, including individual and collective action, and involves the socialization of the teachers into suitable roles through professional identity development and participation within the wider system
- …
