1,179 research outputs found

    The History of Galaxy Formation in Groups: An Observational Perspective

    Get PDF
    We present a pedagogical review on the formation and evolution of galaxies in groups, utilizing observational information from the Local Group to galaxies at z~6. The majority of galaxies in the nearby universe are found in groups, and galaxies at all redshifts up to z~6 tend to cluster on the scale of nearby groups (~1 Mpc). This suggests that the group environment may play a role in the formation of most galaxies. The Local Group, and other nearby groups, display a diversity in star formation and morphological properties that puts limits on how, and when, galaxies in groups formed. Effects that depend on an intragroup medium, such as ram-pressure and strangulation, are likely not major mechanisms driving group galaxy evolution. Simple dynamical friction arguments however show that galaxy mergers should be common, and a dominant process for driving evolution. While mergers between L_* galaxies are observed to be rare at z < 1, they are much more common at earlier times. This is due to the increased density of the universe, and to the fact that high mass galaxies are highly clustered on the scale of groups. We furthermore discus why the local number density environment of galaxies strongly correlates with galaxy properties, and why the group environment may be the preferred method for establishing the relationship between properties of galaxies and their local density.Comment: Invited review, 16 pages, to be published in ESO Astrophysics Symposia: "Groups of Galaxies in the Nearby Universe", eds. I. Saviane, V. Ivanov, J. Borissov

    Effect of halo modelling on WIMP exclusion limits

    Get PDF
    WIMP direct detection experiments are just reaching the sensitivity required to detect galactic dark matter in the form of neutralinos. Data from these experiments are usually analysed under the simplifying assumption that the Milky Way halo is an isothermal sphere with maxwellian velocity distribution. Observations and numerical simulations indicate that galaxy halos are in fact triaxial and anisotropic. Furthermore, in the cold dark matter paradigm galactic halos form via the merger of smaller subhalos, and at least some residual substructure survives. We examine the effect of halo modelling on WIMP exclusion limits, taking into account the detector response. Triaxial and anisotropic halo models, with parameters motivated by observations and numerical simulations, lead to significant changes which are different for different experiments, while if the local WIMP distribution is dominated by small scale clumps then the exclusion limits are changed dramatically.Comment: 9 pages, 9 figures, version to appear in Phys. Rev. D, minor change

    Chaos and flights in the atom-photon interaction in cavity QED

    Full text link
    We study dynamics of the atom-photon interaction in cavity quantum electrodynamics (QED), considering a cold two-level atom in a single-mode high-finesse standing-wave cavity as a nonlinear Hamiltonian system with three coupled degrees of freedom: translational, internal atomic, and the field. The system proves to have different types of motion including L\'{e}vy flights and chaotic walkings of an atom in a cavity. It is shown that the translational motion, related to the atom recoils, is governed by an equation of a parametric nonlinear pendulum with a frequency modulated by the Rabi oscillations. This type of dynamics is chaotic with some width of the stochastic layer that is estimated analytically. The width is fairly small for realistic values of the control parameters, the normalized detuning δ\delta and atomic recoil frequency α\alpha. It is demonstrated how the atom-photon dynamics with a given value of α\alpha depends on the values of δ\delta and initial conditions. Two types of L\'{e}vy flights, one corresponding to the ballistic motion of the atom and another one corresponding to small oscillations in a potential well, are found. These flights influence statistical properties of the atom-photon interaction such as distribution of Poincar\'{e} recurrences and moments of the atom position xx. The simulation shows different regimes of motion, from slightly abnormal diffusion with τ1.13\sim\tau^{1.13} at δ=1.2\delta =1.2 to a superdiffusion with τ2.2 \sim \tau^{2.2} at δ=1.92\delta=1.92 that corresponds to a superballistic motion of the atom with an acceleration. The obtained results can be used to find new ways to manipulate atoms, to cool and trap them by adjusting the detuning δ\delta.Comment: 16 pages, 7 figures. To be published in Phys. Rev.

    Cold atoms in a high-Q ring-cavity

    Get PDF
    We report the confinement of large clouds of ultra-cold 85-Rb atoms in a standing-wave dipole trap formed by the two counter-propagating modes of a high-Q ring-cavity. Studying the properties of this trap we demonstrate loading of higher-order transverse cavity modes and excite recoil-induced resonances.Comment: 4 pages, 4 figure

    Double helical conformation and extreme rigidity in a rodlike polyelectrolyte

    Get PDF
    The ubiquitous biomacromolecule DNA has an axial rigidity persistence length of ~50 nm, driven by its elegant double helical structure. While double and multiple helix structures appear widely in nature, only rarely are these found in synthetic non-chiral macromolecules. Here we describe a double helical conformation in the densely charged aromatic polyamide poly(2,2'-disulfonyl-4,4'-benzidine terephthalamide) or PBDT. This double helix macromolecule represents one of the most rigid simple molecular structures known, exhibiting an extremely high axial persistence length (~1 micrometer). We present X-ray diffraction, NMR spectroscopy, and molecular dynamics (MD) simulations that reveal and confirm the double helical conformation. The discovery of this extreme rigidity in combination with high charge density gives insight into the self-assembly of molecular ionic composites with high mechanical modulus (~1 GPa) yet with liquid-like ion motions inside, and provides fodder for formation of new 1D-reinforced composites.Comment: Accepted for publication by Nature Communication

    Homologous Flares and Magnetic Field Topology in Active Region NOAA 10501 on 20 November 2003

    Get PDF
    We present and interpret observations of two morphologically homologous flares that occurred in active region (AR) NOAA 10501 on 20 November 2003. Both flares displayed four homologous H-alpha ribbons and were both accompanied by coronal mass ejections (CMEs). The central flare ribbons were located at the site of an emerging bipole in the center of the active region. The negative polarity of this bipole fragmented in two main pieces, one rotating around the positive polarity by ~ 110 deg within 32 hours. We model the coronal magnetic field and compute its topology, using as boundary condition the magnetogram closest in time to each flare. In particular, we calculate the location of quasiseparatrix layers (QSLs) in order to understand the connectivity between the flare ribbons. Though several polarities were present in AR 10501, the global magnetic field topology corresponds to a quadrupolar magnetic field distribution without magnetic null points. For both flares, the photospheric traces of QSLs are similar and match well the locations of the four H-alpha ribbons. This globally unchanged topology and the continuous shearing by the rotating bipole are two key factors responsible for the flare homology. However, our analyses also indicate that different magnetic connectivity domains of the quadrupolar configuration become unstable during each flare, so that magnetic reconnection proceeds differently in both events.Comment: 24 pages, 10 figures, Solar Physics (accepted

    First-order cosmological phase transitions in the radiation dominated era

    Full text link
    We consider first-order phase transitions of the Universe in the radiation-dominated era. We argue that in general the velocity of interfaces is non-relativistic due to the interaction with the plasma and the release of latent heat. We study the general evolution of such slow phase transitions, which comprise essentially a short reheating stage and a longer phase equilibrium stage. We perform a completely analytical description of both stages. Some rough approximations are needed for the first stage, due to the non-trivial relations between the quantities that determine the variation of temperature with time. The second stage, instead, is considerably simplified by the fact that it develops at a constant temperature, close to the critical one. Indeed, in this case the equations can be solved exactly, including back-reaction on the expansion of the Universe. This treatment also applies to phase transitions mediated by impurities. We also investigate the relations between the different parameters that govern the characteristics of the phase transition and its cosmological consequences, and discuss the dependence of these parameters with the particle content of the theory.Comment: 38 pages, 3 figures; v2: Minor changes, references added; v3: several typos correcte

    The evolution of galaxy groups and of galaxies therein

    Full text link
    Properties of groups of galaxies depend sensitively on the algorithm for group selection, and even the most recent catalogs of groups built from redshift-space selection should suffer from projections and infalling galaxies. The cosmo-dynamical evolution of groups from initial Hubble expansion to collapse and virialization leads to a fundamental track (FT) in virial-theorem-M/L vs crossing time. The increased rates of mergers, both direct and after dynamical friction, in groups relative to clusters, explain the higher fraction of elliptical galaxies at given local number density in X-ray selected groups, relative to clusters, even when the hierarchical evolution of groups is considered. Galaxies falling into groups and clusters should later travel outwards to typically 2 virial radii, which is somewhat less than the outermost radius where observed galaxy star formation efficiencies are enhanced relative to field galaxies of same morphological type. An ongoing analysis of the internal kinematics of X-ray selected groups suggests that the radial profiles of line of sight velocity dispersion are consistent with isotropic NFW distributions for the total mass density, with higher (lower) concentrations than LambdaCDM predictions in groups of high (low) mass. The critical mass, at M200 ~ 10^13 M_sun is consistent with possible breaks in the X-ray luminosity-temperature and Fundamental Plane relations. The internal kinematics of groups indicate that the M-T relation of groups should agree with that extrapolated from clusters with no break at the group scale. The analyses of observed velocity dispersion profiles and of the FT both suggest that low velocity dispersion groups (compact and loose, X-ray emitting or undetected) are quite contaminated by chance projections.Comment: Invited review, ESO workshop "Groups of Galaxies in the Nearby Universe", held in Santiago, Chile, 5-9 December 2005, ed. I. Saviane, V. Ivanov & J. Borissova, 16 page

    Improved Holographic QCD

    Full text link
    We provide a review to holographic models based on Einstein-dilaton gravity with a potential in 5 dimensions. Such theories, for a judicious choice of potential are very close to the physics of large-N YM theory both at zero and finite temperature. The zero temperature glueball spectra as well as their finite temperature thermodynamic functions compare well with lattice data. The model can be used to calculate transport coefficients, like bulk viscosity, the drag force and jet quenching parameters, relevant for the physics of the Quark-Gluon Plasma.Comment: LatEX, 65 pages, 28 figures, 9 Tables. Based on lectures given at several Schools. To appear in the proceedinds of the 5th Aegean School (Milos, Greece
    corecore