885 research outputs found

    The release of a captive-raised female African Elephant <em>(Loxodonta africana</em>) in the Okavango Delta, Botswana

    Get PDF
    Wild female elephants live in close-knit matrilineal groups and housing captive elephants in artificial social groupings can cause significant welfare issues for individuals not accepted by other group members. We document the release of a captive-raised female elephant used in the safari industry because of welfare and management problems. She was fitted with a satellite collar, and spatial and behavioural data were collected over a 17-month period to quantify her interactions with the wild population. She was then monitored infrequently for a further five-and-a-half years. We observed few signs of aggression towards her from the wild elephants with which she socialized. She used an area of comparable size to wild female elephants, and this continued to increase as she explored new areas. Although she did not fully integrate into a wild herd, she had three calves of her own, and formed a social unit with another female and her calf that were later released from the same captive herd. We recommend that release to the wild be considered as a management option for other captive female elephants

    Weekly Versus Monthly Testosterone Administration On Fast and Slow Skeletal Muscle Fibers in Older Adult Males

    Get PDF
    Context: In older adults, loss of mobility due to sarcopenia is exacerbated in men with low serum T. T replacement therapy is known to increase muscle mass and strength, but the effect of weekly (WK) vs monthly (MO) administration on specific fiber types is unknown. Objective: To determine the efficacy of WK vs MO T replacement on the size and functional capacity of individual fast and slow skeletal muscle fiber types. Design, Setting, and Patients: Subjects were randomized into a 5-month, double-blind, placebo-controlled trial. All subjects (ages, 61–71 y) were community-dwelling men who had T levels \u3c 500 ng/dL. Intervention: Subjects were dosed weekly for 5 months, receiving continuous T (WK, n = 5; 100 mg T enanthate, im injection), monthly cycled T (MO, n = 7; alternating months of T and placebo), or placebo (n = 7). Muscle biopsies of the vastus lateralis were obtained before and after treatment. Main Outcome Measures: Main outcomes for individual slow and fast fibers included fiber diameter, peak force (P0), rate of tension development, maximal shortening velocity, peak power, and Ca2+ sensitivity. Results: Both treatments increased fiber diameter and peak power, with WK treatment 5-fold more effective than MO in increasing type I fiber P0. WK effects on fiber diameter and force were 1.5-fold higher in slow fibers compared to fast fibers. In fast type II fibers, diameter and P0 increased similarly between treatments. The increased power was entirely due to increased fiber size and force. Conclusions: In conclusion, T replacement effects were fiber-type dependent, restricted to increases in cell size, P0, and peak power, and dependent on the paradigm selected (WK vs MO)

    How do marine mammals manage and usually avoid gas emboli formation and gas embolic pathology? critical clues from studies of wild dolphins

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Fahlman, A., Moore, M. J., & Wells, R. S. How do marine mammals manage and usually avoid gas emboli formation and gas embolic pathology? critical clues from studies of wild dolphins. Frontiers in Marine Science, 8, (2021): 598633, https://doi.org/10.3389/fmars.2021.598633.Decompression theory has been mainly based on studies on terrestrial mammals, and may not translate well to marine mammals. However, evidence that marine mammals experience gas bubbles during diving is growing, causing concern that these bubbles may cause gas emboli pathology (GEP) under unusual circumstances. Marine mammal management, and usual avoidance, of gas emboli and GEP, or the bends, became a topic of intense scientific interest after sonar-exposed, mass-stranded deep-diving whales were observed with gas bubbles. Theoretical models, based on our current understanding of diving physiology in cetaceans, predict that the tissue and blood N2 levels in the bottlenose dolphin (Tursiops truncatus) are at levels that would result in severe DCS symptoms in similar sized terrestrial mammals. However, the dolphins appear to have physiological or behavioral mechanisms to avoid excessive blood N2 levels, or may be more resistant to circulating bubbles through immunological/biochemical adaptations. Studies on behavior, anatomy and physiology of marine mammals have enhanced our understanding of the mechanisms that are thought to prevent excessive uptake of N2. This has led to the selective gas exchange hypothesis, which provides a mechanism how stress-induced behavioral change may cause failure of the normal physiology, which results in excessive uptake of N2, and in extreme cases may cause formation of symptomatic gas emboli. Studies on cardiorespiratory function have been integral to the development of this hypothesis, with work initially being conducted on excised tissues and cadavers, followed by studies on anesthetized animals or trained animals under human care. These studies enabled research on free-ranging common bottlenose dolphins in Sarasota Bay, FL, and off Bermuda, and have included work on the metabolic and cardiorespiratory physiology of both shallow- and deep-diving dolphins and have been integral to better understand how cetaceans can dive to extreme depths, for long durations.Many of the studies that have resulted in the data in this review, and that have been integral to develop the selective gas exchange hypothesis have been funded by the Office of Naval Research (ONR Awards # N000141010159, N000141613088, N000141410563, N000140811220, and ONR YIP Award # N000141410563), and Dolphin Quest. The authors declare that Dolphin Quest was not involved in the study design, collection, analysis, interpretation of data, the writing of this article or the decision to submit it for publication

    PREDICTORS OF INTERNATIONAL SKI FEDERATION DISTANCE CROSS-COUNTRY RANKING

    Get PDF
    The Internationl Ski Federation (FIS) ranks Nordic skiers internationally based on race performance. This study aimed to determine if a relationship exists between FIS rankings and performance indicators such as maximum oxygen uptake, metabolic economy, and muscular endurance test performance. Muscular endurance (sit-up + pull-up and push-up + pull-up) were the best predictors utilizing stepwise regression resampling cross-validation (66 hold out groups). The sit-up + pull-up regression was a better fit than the push-up + pull-up (R2 = 0.506 & 0.349, p = 0.053 & 0.203, respectively). Muscular endurance test performance predicts FIS scores better than measures of oxygen consumption measures. Upper-body and core musculature may be an important determinant of performance, as it contributes to generation of propulsive forces in Nordic skiing

    Variations in water and nutrient cycling and soil properties during agricultural landscape restoration

    Get PDF
    The research team examined differences in nutrient, water and carbon storage and output for selected mixtures of annual and perennial plant communities. The research was set up in 14 small sub-watersheds managed by the U.S. Forest Service as part of the Neal Smith National Wildlife Refuge near Prairie City, Iowa. Each sub-watershed had a different placement of prairie conservation strips within crop fields. The project has continued as part of the perennializers working group, also known as the Science-based Trials of Row Crops Integrated with Prairies or STRIPs research team

    The social and ecological integration of captive-raised adolescent male African elephants (Loxodonta africana) into a wild population

    Get PDF
    BACKGROUND: A rapid rise in the number of captive African elephants (Loxodonta africana) used in the tourism industry in southern Africa and orphaned elephants in human care has led to concerns about their long-term management, particularly males. One solution is to release them into the wild at adolescence, when young males naturally leave their herd. However, this raises significant welfare concerns: little is known about how well released elephants integrate into wild populations and whether they pose a greater threat to humans than wild elephants. We document the release of three captive-raised adolescent male African elephants in the Okavango Delta, Botswana. METHODOLOGY/PRINCIPAL FINDINGS: Despite having been part of a herd of working elephants for at least eight years, the three males progressively integrated into the complex fission-fusion society of wild bull elephants. In the three years following release, they showed no tendency to be closer to human habitation, and there were no significant differences between wild and captive-raised adolescent males in the total number of social interactions, size of ranges and habitat use. However, the captive-raised elephants sparred less and vocalised more, and spent more time alone and in smaller social groups. Thereafter the released elephants continued to expand their ranges and interact with both mixed-sex herds and males. One male was shot by farmers 94 months after release, along with ten wild elephants, on a ranch outside the protected area. CONCLUSIONS/SIGNIFICANCE: We show that captive-raised adolescent male elephants can integrate into a wild population. Long-term studies are required to determine the longevity, breeding success, and eventual fate of released male elephants, but we identified no significant short-term welfare problems for the released elephants or recipient population. Release of captive-raised mammals with complex social systems is a husbandry option that should be explored further

    Abnormal mineralization of the Ts65Dn Down syndrome mouse appendicular skeleton begins during embryonic development in a Dyrk1a-independent manner

    Get PDF
    The relationship between gene dosage imbalance and phenotypes associated with Trisomy 21, including the etiology of abnormal bone phenotypes linked to Down syndrome (DS), is not well understood. The Ts65Dn mouse model for DS exhibits appendicular skeletal defects during adolescence and adulthood but the developmental and genetic origin of these phenotypes remains unclear. It is hypothesized that the postnatal Ts65Dn skeletal phenotype originates during embryonic development and results from an increased Dyrk1a gene copy number, a gene hypothesized to play a critical role in many DS phenotypes. Ts65Dn embryos exhibit a lower percent bone volume in the E17.5 femur when compared to euploid embryos. Concomitant with gene copy number, qPCR analysis revealed a  ~1.5 fold increase in Dyrk1a transcript levels in the Ts65Dn E17.5 embryonic femur as compared to euploid. Returning Dyrk1a copy number to euploid levels in Ts65Dn, Dyrk1a+/− embryos did not correct the trisomic skeletal phenotype but did return Dyrk1a gene transcript levels to normal. The size and protein expression patterns of the cartilage template during embryonic bone development appear to be unaffected at E14.5 and E17.5 in trisomic embryos. Taken together, these data suggest that the dosage imbalance of genes other than Dyrk1a is involved in the development of the prenatal bone phenotype in Ts65Dn embryos

    Bubbles in live-stranded dolphins

    Get PDF
    © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Proceedings of the Royal Society B : Biological Sciences 279 (2012): 1396-1404, doi:10.1098/rspb.2011.1754.Bubbles in supersaturated tissues and blood occur in beaked whales stranded near sonar exercises, and post-mortem in dolphins bycaught at depth and then hauled to the surface. To evaluate live dolphins for bubbles, liver, kidneys, eyes and blubber–muscle interface of live-stranded and capture-release dolphins were scanned with B-mode ultrasound. Gas was identified in kidneys of 21 of 22 live-stranded dolphins and in the hepatic portal vasculature of 2 of 22. Nine then died or were euthanized and bubble presence corroborated by computer tomography and necropsy, 13 were released of which all but two did not re-strand. Bubbles were not detected in 20 live wild dolphins examined during health assessments in shallow water. Off-gassing of supersaturated blood and tissues was the most probable origin for the gas bubbles. In contrast to marine mammals repeatedly diving in the wild, stranded animals are unable to recompress by diving, and thus may retain bubbles. Since the majority of beached dolphins released did not re-strand it also suggests that minor bubble formation is tolerated and will not lead to clinically significant decompression sickness.Funding for this work was provided by the US Office of Naval Research Award no. N000140811220 and the International Fund for Animal Welfare
    corecore