10 research outputs found

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Acute Methylenedioxypyrovalerone Toxicity

    No full text
    The objective of this study was to characterize the acute clinical effects, laboratory findings, complications, and disposition of patients presenting to the hospital after abusing synthetic cathinone. We conducted a retrospective multicenter case series of patients with synthetic cathinone abuse by searching for the terms bath salts, MDPV, methylenedioxypyrovalerone, mephedrone, methcathinone, methylone, methedrone, and cathinone within the "agent" field of a national clinical toxicology database (ToxIC). The medical records of these patients were obtained and abstracted by investigators at each study site. Patients with confirmatory testing that identified a synthetic cathinone in either blood or urine were included in the series. Patients who had either an undetectable synthetic cathinone test or no confirmatory testing were excluded. A data abstraction sheet was used to obtain information on each patient. We entered data into an Excel spreadsheet and calculated descriptive statistics. We identified 23 patients with confirmed synthetic cathinone exposure--all were positive for methylenedioxyprovalerone (MDPV). Eighty-three percent were male and 74 % had recreational intent. The most common reported clinical effects were tachycardia (74 %), agitation (65 %), and sympathomimetic syndrome (65 %). Acidosis was the most common laboratory abnormality (43 %). Seventy-eight percent of patients were treated with benzodiazepines and 30 % were intubated. Ninety-six percent of patients were hospitalized and 87 % were admitted to the ICU. The majority (61 %) of patients was discharged home but 30 % required inpatient psychiatric care. There was one death in our series. The majority of patients presenting to the hospital after abusing MDPV have severe sympathomimetic findings requiring hospitalization. A number of these patients require inpatient psychiatric care after their acute presentation

    Inherited DNA-Repair Defects in Colorectal Cancer

    No full text
    Colorectal cancer (CRC) heritability has been estimated to be around 30%. However, mutations in the known CRC-susceptibility genes explain CRC risk in fewer than 10% of affected individuals. Germline mutations in DNA-repair genes (DRGs) have recently been reported in CRC, but their contribution to CRC risk is largely unknown. We evaluated the gene-level germline mutation enrichment of 40 DRGs in 680 unselected CRC individuals and 27,728 ancestry-matched cancer-free adults. Significant findings were then examined in independent cohorts of 1,661 unselected CRC individuals and 1,456 individuals with early-onset CRC. Of the 680 individuals in the discovery set, 31 (4.56%) individuals harbored germline pathogenic mutations in known CRC-susceptibility genes, and another 33 (4.85%) individuals had DRG mutations that have not been previously associated with CRC risk. Germline pathogenic mutations in ATM and PALB2 were enriched in both the discovery (OR = 2.81 and p = 0.035 for ATM and OR = 4.91 and p = 0.024 for PALB2) and validation (OR = 2.97 and adjusted p = 0.0013 for ATM and OR = 3.42 and adjusted p = 0.034 for PALB2) sets. Biallelic loss of ATM was evident in all individuals with matched tumor profiling. CRC individuals also had higher rates of actionable mutations in the HR pathway, which can substantially increase the risk of developing cancers other than CRC. Our analysis provides evidence for ATM and PALB2 as CRC-risk genes, underscoring the importance of the homologous recombination pathway in CRC. In addition, we identified frequent complete homologous recombination deficiency in CRC tumors, representing a unique opportunity to explore targeted therapeutic interventions such as poly-ADP ribose polymerase inhibitor (PARPi)

    Association of Inherited Pathogenic Variants in Checkpoint Kinase 2 (CHEK2) with Susceptibility to Testicular Germ Cell Tumors

    No full text
    Importance: Approximately 50% of the risk for the development of testicular germ cell tumors (TGCTs) is estimated to be heritable, but no mendelian TGCT predisposition genes have yet been identified. It is hypothesized that inherited pathogenic DNA repair gene (DRG) alterations may drive susceptibility to TGCTs. Objective: To systematically evaluate the enrichment of germline pathogenic variants in the mendelian cancer predisposition DRGs in patients with TGCTs vs healthy controls. Design, Setting, and Participants: A case-control enrichment analysis was performed from January 2016 to May 2018 to screen for 48 DRGs in 205 unselected men with TGCT and 27173 ancestry-matched cancer-free individuals from the Exome Aggregation Consortium cohort in the discovery stage. Significant findings were selectively replicated in independent cohorts of 448 unselected men with TGCTs and 442 population-matched controls, as well as 231 high-risk men with TGCTs and 3090 ancestry-matched controls. Statistical analysis took place from January to May 2018. Main Outcomes and Measures: Gene-level enrichment analysis of germline pathogenic variants in individuals with TGCTs relative to cancer-free controls. Results: Among 205 unselected men with TGCTs (mean [SD] age, 33.04 [9.67] years), 22 pathogenic germline DRG variants, one-third of which were in CHEK2 (OMIM 604373), were identified in 20 men (9.8%; 95% CI, 6.1%-14.7%). Unselected men with TGCTs were approximately 4 times more likely to carry germline loss-of-function CHEK2 variants compared with cancer-free individuals from the Exome Aggregation Consortium cohort (odds ratio [OR], 3.87; 95% CI, 1.65-8.86; nominal P =.006; q = 0.018). Similar enrichment was also seen in an independent cohort of 448 unselected Croatian men with TGCTs (mean [SD] age, 31.98 [8.11] years) vs 442 unselected Croatian men without TGCTs (at least 50 years of age at time of sample collection) (OR, \u3e1.4; P =.03) and 231 high-risk men with TGCTs (mean [SD] age, 31.54 [9.24] years) vs 3090 men (all older than 50 years) from the Penn Medicine Biobank (OR, 6.30; 95% CI, 2.34-17.31; P =.001). The low-penetrance CHEK2 variant (p.Ile157Thr) was found to be a Croatian founder TGCT risk variant (OR, 3.93; 95% CI, 1.53-9.95; P =.002). Individuals with the pathogenic CHEK2 loss-of-function variants developed TGCTs 6 years earlier than individuals with CHEK2 wild-type alleles (5.95 years; 95% CI, 1.48-10.42; P =.009). Conclusions and Relevance: This multicenter case-control analysis of men with or without TGCTs provides evidence for CHEK2 as a novel moderate-penetrance TGCT susceptibility gene, with potential clinical utility. In addition to highlighting DNA-repair deficiency as a potential mechanism driving TGCT susceptibility, this analysis also provides new avenues to explore management strategies and biological investigations for high-risk individuals

    Determinants of HIV-1 broadly neutralizing antibody induction.

    No full text
    Broadly neutralizing antibodies (bnAbs) are a focal component of HIV-1 vaccine design, yet basic aspects of their induction remain poorly understood. Here we report on viral, host and disease factors that steer bnAb evolution using the results of a systematic survey in 4,484 HIV-1-infected individuals that identified 239 bnAb inducers. We show that three parameters that reflect the exposure to antigen-viral load, length of untreated infection and viral diversity-independently drive bnAb evolution. Notably, black participants showed significantly (P = 0.0086-0.038) higher rates of bnAb induction than white participants. Neutralization fingerprint analysis, which was used to delineate plasma specificity, identified strong virus subtype dependencies, with higher frequencies of CD4-binding-site bnAbs in infection with subtype B viruses (P = 0.02) and higher frequencies of V2-glycan-specific bnAbs in infection with non-subtype B viruses (P = 1 × 10(-5)). Thus, key host, disease and viral determinants, including subtype-specific envelope features that determine bnAb specificity, remain to be unraveled and harnessed for bnAb-based vaccine design
    corecore