68,160 research outputs found
Application of redundancy in the Saturn 5 guidance and control system
The Saturn launch vehicle's guidance and control system is so complex that the reliability of a simplex system is not adequate to fulfill mission requirements. Thus, to achieve the desired reliability, redundancy encompassing a wide range of types and levels was employed. At one extreme, the lowest level, basic components (resistors, capacitors, relays, etc.) are employed in series, parallel, or quadruplex arrangements to insure continued system operation in the presence of possible failure conditions. At the other extreme, the highest level, complete subsystem duplication is provided so that a backup subsystem can be employed in case the primary system malfunctions. In between these two extremes, many other redundancy schemes and techniques are employed at various levels. Basic redundancy concepts are covered to gain insight into the advantages obtained with various techniques. Points and methods of application of these techniques are included. The theoretical gain in reliability resulting from redundancy is assessed and compared to a simplex system. Problems and limitations encountered in the practical application of redundancy are discussed as well as techniques verifying proper operation of the redundant channels. As background for the redundancy application discussion, a basic description of the guidance and control system is included
The use of ion beam cleaning to obtain high quality cold welds with minimal deformation
A variation of cold welding is described which utilizes an ion beam to clean mating surfaces prior to joining in a vacuum environment. High quality solid state welds were produced with minimal deformation
Charge control experiments on a CH-53E helicopter in a dusty environment
Charge control tests were carried out on a ground based, Marine Corps helicopter to determine if control of the electric fields acting on the engine exhaust gases could be used to reduce the electrification of the helicopter when it operated in a dusty atmosphere. The test aircraft was flown to a dusty, unpaved area and was then isolated electrically from the earth. When the helicopter engines were operated at ground idle with the rotor locked, the isolated aircraft charged positively, as had been observed previously. However, when the rotor brake was released and the turning rotor created a downdraft that raised dust clouds, the aircraft always became charged more positively, to potentials ranging form +30 to +45 kV. The dust clouds raised by the rotor downwash invariably carried negative space charges with concentrations of up to -100 nC/cu m and caused surface electric fields with strengths of up to 10 kV/m immediately down wind of the aircraft. The natural charging of the helicopter operating in these dust clouds was successfully opposed by control of the electric fields acting on the hot, electrically conductive exhaust gases. The control was achieved by placing electrostatic shield around the exhausts
Resolving the Structure of Cold Dark Matter Halos
We examine the effects of mass resolution and force softening on the density
profiles of cold dark matter halos that form within cosmological N-body
simulations. As we increase the mass and force resolution, we resolve
progenitor halos that collapse at higher redshifts and have very high
densities. At our highest resolution we have nearly 3 million particles within
the virial radius, several orders of magnitude more than previously used and we
can resolve more than one thousand surviving dark matter halos within this
single virialised system. The halo profiles become steeper in the central
regions and we may not have achieved convergence to a unique slope within the
inner 10% of the virialised region. Results from two very high resolution halo
simulations yield steep inner density profiles, . The
abundance and properties of arcs formed within this potential will be different
from calculations based on lower resolution simulations. The kinematics of
disks within such a steep potential may prove problematic for the CDM model
when compared with the observed properties of halos on galactic scales.Comment: Final version, to be published in the ApJLetter
Reply to "Comment on Evidence for the droplet picture of spin glasses"
Using Monte Carlo simulations (MCS) and the Migdal-Kadanoff approximation
(MKA), Marinari et al. study in their comment on our paper the link overlap
between two replicas of a three-dimensional Ising spin glass in the presence of
a coupling between the replicas. They claim that the results of the MCS
indicate replica symmetry breaking (RSB), while those of the MKA are trivial,
and that moderate size lattices display the true low temperature behavior. Here
we show that these claims are incorrect, and that the results of MCS and MKA
both can be explained within the droplet picture.Comment: 1 page, 1 figur
Constraints on Hidden Photon Models from Electron g-2 and Hydrogen Spectroscopy
The hidden photon model is one of the simplest models which can explain the
anomaly of the muon anomalous magnetic moment (g-2). The experimental
constraints are studied in detail, which come from the electron g-2 and the
hydrogen transition frequencies. The input parameters are set carefully in
order to take dark photon contributions into account and to prevent the
analysis from being self-inconsistent. It is shown that the new analysis
provides a constraint severer by more than one order of magnitude than the
previous result.Comment: 18 pages, 2 figures, 1 table. v2: minor correction
Entanglement entropy of random quantum critical points in one dimension
For quantum critical spin chains without disorder, it is known that the
entanglement of a segment of N>>1 spins with the remainder is logarithmic in N
with a prefactor fixed by the central charge of the associated conformal field
theory. We show that for a class of strongly random quantum spin chains, the
same logarithmic scaling holds for mean entanglement at criticality and defines
a critical entropy equivalent to central charge in the pure case. This
effective central charge is obtained for Heisenberg, XX, and quantum Ising
chains using an analytic real-space renormalization group approach believed to
be asymptotically exact. For these random chains, the effective universal
central charge is characteristic of a universality class and is consistent with
a c-theorem.Comment: 4 pages, 3 figure
- …