495 research outputs found

    Effect of Potassium Salts on Extractable Soil Manganese

    Get PDF
    Incubation experiments with an acid, poorly drained soil (Typic Albaqualf) showed that the level of extractable Mn was increased by salt treatments. The relative order of the salt effect was KBr > KCl > KNO? > K?SO?. Soil pH changes accounted for the majority of the KNO? and K?SO? treatment effects, but the KCl and KBr effects could not be explained on this basis. In addition, ionic strength considerations and differential biological activities were not found to be factors influencing the K salt effects in the soil system. A hypothesis is presented to explain the KCl or KBr effect, in which the anion would function in an oxidation-reduction reaction. This hypothesis is supported by the fact that the soil treated with KBr contained more extractable Mn than that treated with KCl, in accordance with theory. Theoretical calculations also suggested the possibility that both Cl- and Br- could reduce the lower valency Mn oxides under the experimental soil conditions

    A computational group theoretic symmetry reduction package for the SPIN model checker

    Get PDF
    Symmetry reduced model checking is hindered by two problems: how to identify state space symmetry when systems are not fully symmetric, and how to determine equivalence of states during search. We present TopSpin, a fully automatic symmetry reduction package for the Spin model checker. TopSpin uses the Gap computational algebra system to effectively detect state space symmetry from the associated Promela specification, and to choose an efficient symmetry reduction strategy by classifying automorphism groups as a disjoint/wreath product of subgroups. We present encouraging experimental results for a variety of Promela examples

    Energy Loss of Heavy Quarks from Asymptotically AdS Geometries

    Get PDF
    We investigate some universal features of AdS/CFT models of heavy quark energy loss. In addition, as a specific example, we examine quark damping in the spinning D3-brane solution dual to N=4 SU(N_c) super Yang-Mills at finite temperature and R-charge chemical potential.Comment: 17 pages, 9 figures; v2 refs added, typo fixe

    Anomalous specific heat in high-density QED and QCD

    Full text link
    Long-range quasi-static gauge-boson interactions lead to anomalous (non-Fermi-liquid) behavior of the specific heat in the low-temperature limit of an electron or quark gas with a leading TlnT1T\ln T^{-1} term. We obtain perturbative results beyond the leading log approximation and find that dynamical screening gives rise to a low-temperature series involving also anomalous fractional powers T(3+2n)/3T^{(3+2n)/3}. We determine their coefficients in perturbation theory up to and including order T7/3T^{7/3} and compare with exact numerical results obtained in the large-NfN_f limit of QED and QCD.Comment: REVTEX4, 6 pages, 2 figures; v2: minor improvements, references added; v3: factor of 2 error in the T^(7/3) coefficient corrected and plots update

    Perturbative QCD at non-zero chemical potential: Comparison with the large-Nf limit and apparent convergence

    Full text link
    The perturbative three-loop result for the thermodynamic potential of QCD at finite temperature and chemical potential as obtained in the framework of dimensional reduction is compared with the exact result in the limit of large flavor number. The apparent convergence of the former as well as possibilities for optimization are investigated. Corresponding optimized results for full QCD are given for the case of two massless quark flavors.Comment: REVTEX4, 4 pages, 3 color figures. v2: fig. 3 now includes also lattice data for two-flavor QCD at nonzero chemical potentia

    Frame Theory for Signal Processing in Psychoacoustics

    Full text link
    This review chapter aims to strengthen the link between frame theory and signal processing tasks in psychoacoustics. On the one side, the basic concepts of frame theory are presented and some proofs are provided to explain those concepts in some detail. The goal is to reveal to hearing scientists how this mathematical theory could be relevant for their research. In particular, we focus on frame theory in a filter bank approach, which is probably the most relevant view-point for audio signal processing. On the other side, basic psychoacoustic concepts are presented to stimulate mathematicians to apply their knowledge in this field

    Superdeformed rotational bands in the Mercury region; A Cranked Skyrme-Hartree-Fock-Bogoliubov study

    Get PDF
    A study of rotational properties of the ground superdeformed bands in \Hg{0}, \Hg{2}, \Hg{4}, and \Pb{4} is presented. We use the cranked Hartree-Fock-Bogoliubov method with the {\skm} parametrization of the Skyrme force in the particle-hole channel and a seniority interaction in the pairing channel. An approximate particle number projection is performed by means of the Lipkin-Nogami prescription. We analyze the proton and neutron quasiparticle routhians in connection with the present information on about thirty presently observed superdeformed bands in nuclei close neighbours of \Hg{2}.Comment: 26 LaTeX pages, 14 uuencoded postscript figures included, Preprint IPN-TH 93-6

    Transport Properties of the Quark-Gluon Plasma -- A Lattice QCD Perspective

    Full text link
    Transport properties of a thermal medium determine how its conserved charge densities (for instance the electric charge, energy or momentum) evolve as a function of time and eventually relax back to their equilibrium values. Here the transport properties of the quark-gluon plasma are reviewed from a theoretical perspective. The latter play a key role in the description of heavy-ion collisions, and are an important ingredient in constraining particle production processes in the early universe. We place particular emphasis on lattice QCD calculations of conserved current correlators. These Euclidean correlators are related by an integral transform to spectral functions, whose small-frequency form determines the transport properties via Kubo formulae. The universal hydrodynamic predictions for the small-frequency pole structure of spectral functions are summarized. The viability of a quasiparticle description implies the presence of additional characteristic features in the spectral functions. These features are in stark contrast with the functional form that is found in strongly coupled plasmas via the gauge/gravity duality. A central goal is therefore to determine which of these dynamical regimes the quark-gluon plasma is qualitatively closer to as a function of temperature. We review the analysis of lattice correlators in relation to transport properties, and tentatively estimate what computational effort is required to make decisive progress in this field.Comment: 54 pages, 37 figures, review written for EPJA and APPN; one parag. added end of section 3.4, and one at the end of section 3.2.2; some Refs. added, and some other minor change
    corecore