73,580 research outputs found

    Considerations of Air Flow in Combustion Chambers of High-Speed Compression-Ignition Engines

    Get PDF
    The air flow in combustion chambers is divided into three fundamental classes - induced, forced, and residual. A generalized resume is given of the present status of air flow investigations and of the work done at this and other laboratories to determine the direction and velocity of air movement in auxiliary and integral combustion chambers. The effects of air flow on engine performance are mentioned to show that although air flow improves the combustion efficiency, considerable induction, friction, and thermal losses must be guarded against

    Performance of a Compression-ignition Engine with a Precombustion Chamber Having High-Velocity Air Flow

    Get PDF
    Presented here are the results of performance tests made with a single-cylinder, four stroke cycle, compression-ignition engine. These tests were made on a precombustion chamber type of cylinder head designed to have air velocity and tangential air flow in both the chamber and cylinder. The performance was investigated for variable load and engine speed, type of fuel spray, valve opening pressure, injection period and, for the spherical chamber, position of the injection spray relative to the air flow. The pressure variations between the pear-shaped precombustion chamber and the cylinder for motoring and full load conditions were determined with a Farnboro electric indicator. The combustion chamber designs tested gave good mixing of a single compact fuel spray with the air, but did not control the ensuing combustion sufficiently. Relative to each other, the velocity of air flow was too high, the spray dispersion by injection too great, and the metering effect of the cylinder head passage insufficient. The correct relation of these factors is of the utmost importance for engine performance

    The Effect of Connecting-passage Diameter on the Performance of a Compression-ignition Engine with a Precombustion Chamber

    Get PDF
    Results of motoring tests are presented showing the effect of passage diameter on chamber and cylinder compression pressures, maximum pressure differences, and f.m.e.p. over a speed range from 300 to 1,750 r.p.m. Results of engine performance tests are presented which show the effect of passage diameter on m.e.p., explosion pressures, specific fuel consumption, and rates of pressure rise for a range of engine speeds from 500 to 1,500 r.p.m. The cylinder compression pressure, the maximum pressure difference, and the f.m.e.p. decreased rapidly as the passage diameter increased to 29/64 inch, whereas further increase in passage diameter effected only a slight change. The most suitable passage diameter for good engine performance and operating characteristics was 29/64 inch. Passage diameter became less critical with a decrease in engine speed. Therefore, the design should be based on maximum operating speed. Optimum performance and satisfactory combustion control could not be obtained by means of any single diameter of the connecting passage

    Performance tests of a single-cylinder compression-ignition engine with a displacer piston

    Get PDF
    Engine performance was investigated using a rectangular displacer on the piston crown to cause a forced air flow in a vertical-disk combustion chamber of a single-cylinder, 4-stroke-cycle compression-ignition engine. The optimum air-flow area was determined first with the area concentrated at one end of the displacer and then with the area equally divided between two passages, one at each end of the displacer. Best performance was obtained with the two-passage air flow arranged to give a calculated maximum air-flow speed of 8 times the linear crank-pin speed. With the same fuel-spray formation as used without the air flow, the maximum clear exhaust brake mean effective pressure at 1,500 r.p.m. was increased from 90 to 115 pounds per square inch and the corresponding fuel consumption reduced from 0.46 to 0.43 pound per brake horsepower-hour. At 1,200 r.p.m., a maximum clear exhaust brake mean effective pressure of 120 pounds per square inch was obtained at a fuel consumption of 0.42 pound per brake horsepower-hour. At higher specific fuel consumption the brake mean effective pressure was still increasing rapidly

    An Invariant Theory of Spacelike Surfaces in the Four-dimensional Minkowski Space

    Full text link
    We consider spacelike surfaces in the four-dimensional Minkowski space and introduce geometrically an invariant linear map of Weingarten-type in the tangent plane at any point of the surface under consideration. This allows us to introduce principal lines and an invariant moving frame field. Writing derivative formulas of Frenet-type for this frame field, we obtain eight invariant functions. We prove a fundamental theorem of Bonnet-type, stating that these eight invariants under some natural conditions determine the surface up to a motion. We show that the basic geometric classes of spacelike surfaces in the four-dimensional Minkowski space, determined by conditions on their invariants, can be interpreted in terms of the properties of the two geometric figures: the tangent indicatrix, and the normal curvature ellipse. We apply our theory to a class of spacelike general rotational surfaces.Comment: 23 pages; to appear in Mediterr. J. Math., Vol. 9 (2012

    Multiparticle States and the Hadron Spectrum on the Lattice

    Get PDF
    The Clebsch-Gordan decomposition is calculated for direct products of the irreducible representations of the cubic space group. These results are used to identify multiparticle states which appear in the hadron spectrum on the lattice. Consideration of the cubic space group indicates how combinations of both zero momentum and non-zero momentum multiparticle states contribute to the spectrum.Comment: v2) Little groups for lattice momenta corrected. Includes a more consistent labeling scheme. (13 pages

    The Effect of Clearance Distribution on the Performance of a Compression-ignition Engine with a Precombustion Chamber

    Get PDF
    The clearance distribution in a precombustion chamber cylinder head was varied so that for a constant compression ratio of 13.5 the spherical auxiliary chambers contained 20, 35, 50, and 70 per cent of the total clearance volume. Each chamber was connected to the cylinder by a single circular passage, flared at both ends, and of a cross-sectional area proportional to the chamber volume, thereby giving the same calculated air-flow velocity through each passage. Results of engine-performance tests are presented with variations of power, fuel consumption, explosion pressure, rate of pressure rise, ignition lag, heat loss to the cooling water, and motoring characteristics. For good performance the minimum auxiliary chamber volume, with the cylinder head design used, was 35 per cent of the total clearance volume; for larger volumes the performance improves but slightly. With the auxiliary chamber that contained 35 percent of the clearance volume there were obtained the lowest explosion pressures, medium rates of pressure rise, and slightly less than the maximum power. For all clearance distributions an increase in engine speed decreased the ignition lag in seconds and increased the rate of pressure rise

    A novel approach to study realistic navigations on networks

    Get PDF
    We consider navigation or search schemes on networks which are realistic in the sense that not all search chains can be completed. We show that the quantity μ=ρ/sd\mu = \rho/s_d, where sds_d is the average dynamic shortest distance and ρ\rho the success rate of completion of a search, is a consistent measure for the quality of a search strategy. Taking the example of realistic searches on scale-free networks, we find that μ\mu scales with the system size NN as NδN^{-\delta}, where δ\delta decreases as the searching strategy is improved. This measure is also shown to be sensitive to the distintinguishing characteristics of networks. In this new approach, a dynamic small world (DSW) effect is said to exist when δ0\delta \approx 0. We show that such a DSW indeed exists in social networks in which the linking probability is dependent on social distances.Comment: Text revised, references added; accepted version in Journal of Statistical Mechanic

    The 2-D magnetohydrostatic configurations leading to flares or quiescent filament eruptions

    Get PDF
    To investigate the cause of flares and quiescent filament eruptions the quasi-static evolution of a magnetohydrostatic (MHS) model was studied. The results lead to a proposal that: the sudden disruption of an active-region filament field configuration and the accompanying flare result from the lack of a neighboring equilibrium state as magnetic shear is increased above the critical value; and a quiescent filament eruption is due to an ideal MHD kink instability of a highly twisted detached flux tube formed by the increase of plasma current flowing along the length of the filament. A numerical solution was developed for the 2-D MHS equation for the self-consistent equilibrium of a filament and overlying coronal magnetic field. Increase of the poloidal current causes increase of magnetic shear. As shear increases past a critical point, there is a discontinuous topological change in the equilibrium configuration. It was proposed that the lack of a neighboring equilibrium triggers a flare. Increase of the axial current results in a detached tube with enough helical twist to be unstable to ideal MHD kink modes. It was proposed that this is the condition for the eruption of a quiescent filament
    corecore