5,467 research outputs found

    Thinking beyond the hybrid:“actually-existing” cities “after neoliberalism” in Boyle <i>et al.</i>

    Get PDF
    In their article, ‘The spatialities of actually existing neoliberalism in Glasgow, 1977 to present’, Mark Boyle, Christopher McWilliams and Gareth Rice (2008) usefully problematise our current understanding of neoliberal urbanism. Our response is aimed at developing a sympathetic but critical approach to Boyle et al's understanding of neoliberal urbanism as illustrated by the Glasgow example. In particular, the counterposing by Boyle et al of a 'hybrid, mutant' model to a 'pure' model of neoliberalism for us misrepresents existing models of neoliberalism as a perfectly finished object rather than a roughly mottled process. That they do not identify any ‘pure’ model leads them to create a straw construct against which they can claim a more sophisticated, refined approach to the messiness of neoliberal urbanism. In contrast, we view neoliberalism as a contested and unstable response to accumulation crises at various scales of analysis

    Modeling of radiation damage in silicon solar cells

    Get PDF
    One MeV electron irradiation produces preponderantly isolated vacancy interstitial pairs. If neither of these defects is mobile, the concentration of each grows linearly with fluence. Annealing of damage depends on the nature of the damage. Vacancy interstitial pairs which are bound by an interaction such that they mutually annihilate rather than dissociate are termed close pairs; close pair recovery usually occurs at a lower temperature than the temperature at which long distance defect migration occurs. Annealing of the remaining frozen in damage occurs when a temperature is reached where the vacancy or interstitial is mobile; usually the interstitial is more mobile than the vacancy. The recovery occurs in two regimes which may be resoluable

    Long-Term In Vivo Gene Expression via Delivery of PEI–DNA Condensates from Porous Polymer Scaffolds

    Full text link
    Nonviral delivery vectors are attractive for gene therapy approaches in tissue engineering, but suffer from low transfection efficiency and short-term gene expression. We hypothesized that the sustained delivery of poly(ethylenimine) (PEI)-condensed DNA from three-dimensional biodegradable scaffolds that encourage cell infiltration could greatly enhance gene expression. To test this hypothesis, a PEI-condensed plasmid encoding ÎČ-galactosidase was incorporated into porous poly(lactide-co-glycolide) (PLG) scaffolds, using a gas foaming process. Four conditions were examined: condensed DNA and uncondensed DNA encapsulated into PLG scaffolds, blank scaffolds, and bolus delivery of condensed DNA in combination with implantation of PLG scaffolds. Implantation of scaffolds incorporating condensed ÎČ-galactosidase plasmid into the subcutaneous tissue of rats resulted in a high level of gene expression for the entire 15-week duration of the experiment, as exemplified by extensive positive staining for ÎČ-galactosidase gene expression observed on the exterior surface and throughout the cross-sections of the explanted scaffolds. No positive staining could be observed for the control conditions either on the exterior surface or in the cross-section at 8- and 15-week time points. In addition, a high percentage (55–60%) of cells within scaffolds incorporating condensed DNA at 15 weeks demonstrated expression of the DNA, confirming the sustained uptake and expression of the encapsulated plasmid DNA. Quantitative analysis of ÎČ-galactosidase gene expression revealed that expression levels in scaffolds incorporating condensed DNA were one order of magnitude higher than those of other conditions at the 2- week time point and nearly two orders of magnitude higher than those of the control conditions at the 8- and 15-week time points. This study demonstrated that the sustained delivery of PEI–condensed plasmid DNA from PLG scaffolds led to an in vivo long-term and high level of gene expression, and this system may find application in areas such as bone tissue engineering.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63281/1/hum.2005.16.609.pd

    High-energy electron-induced damage production at room temperature in aluminum-doped silicon

    Get PDF
    DLTS and EPR measurements are reported on aluminum-doped silicon that was irradiated at room temperature with high-energy electrons. Comparisons are made to comparable experiments on boron-doped silicon. Many of the same defects observed in boron-doped silicon are also observed in aluminum-doped silicon, but several others were not observed, including the aluminum interstitial and aluminum-associated defects. Damage production modeling, including the dependence on aluminum concentration, is presented

    Distinction between the Poole-Frenkel and tunneling models of electric field-stimulated carrier emission from deep levels in semiconductors

    Get PDF
    The enhancement of the emission rate of charge carriers from deep-level defects in electric field is routinely used to determine the charge state of the defects. However, only a limited number of defects can be satisfactorily described by the Poole-Frenkel theory. An electric field dependence different from that expected from the Poole-Frenkel theory has been repeatedly reported in the literature, and no unambiguous identification of the charge state of the defect could be made. In this article, the electric field dependencies of emission of carriers from DX centers in AlxGa1-xAs:Te, Cu pairs in silicon, and Ge:Hg have been studied applying static and terahertz electric fields, and analyzed by using the models of Poole-Frenkel and phonon assisted tunneling. It is shown that phonon assisted tunneling and Poole-Frenkel emission are two competitive mechanisms of enhancement of emission of carriers, and their relative contribution is determined by the charge state of the defect and by the electric-field strength. At high-electric field strengths carrier emission is dominated by tunneling independently of the charge state of the impurity. For neutral impurities, where Poole-Frenkel lowering of the emission barrier does not occur, the phonon assisted tunneling model describes well the experimental data also in the low-field region. For charged impurities the transition from phonon assisted tunneling at high fields to Poole-Frenkel effect at low fields can be traced back. It is suggested that the Poole-Frenkel and tunneling models can be distinguished by plotting logarithm of the emission rate against the square root or against the square of the electric field, respectively. This analysis enables one to unambiguously determine the charge state of a deep-level defect

    Deep-level defects in n-type GaAsBi alloys grown by molecular beam epitaxy at low temperature and their influence on optical properties

    Get PDF
    Deep-level defects in n-type GaAs1-x Bi x having 0 ≀ x ≀ 0.023 grown on GaAs by molecular beam epitaxy at substrate temperature of 378 °C have been injvestigated by deep level transient spectroscopy. The optical properties of the layers have been studied by contactless electroreflectance and photoluminescence. We find that incorporating Bi suppresses the formation of GaAs-like electron traps, thus reducing the total trap concentration in dilute GaAsBi layers by over two orders of magnitude compared to GaAs grown under the same conditions. In order to distinguish between Bi- and host-related traps and to identify their possible origin, we used the GaAsBi band gap diagram to correlate their activation energies in samples with different Bi contents. This approach was recently successfully applied for the identification of electron traps in n-type GaAs1-x N x and assumes that the activation energy of electron traps decreases with the Bi (or N)-related downward shift of the conduction band. On the basis of this diagram and under the support of recent theoretical calculations, at least two Bi-related traps were revealed and associated with Bi pair defects, i.e. (VGa+BiGa)(-/2-) and (AsGa+BiGa)(0/1-). In the present work it is shown that these defects also influence the photoluminescence properties of GaAsBi alloys

    First look at the giant radio galaxy 3C 236 with LOFAR

    Get PDF
    We have examined the giant radio galaxy 3C 236 using LOFAR at 143 MHz down to an angular resolution of 7″, in combination with observations at higher frequencies. We used the low frequency data to derive spectral index maps with the highest resolution yet at these low frequencies. We confirm a previous detection of an inner hotspot in the north-west lobe and for the first time observe that the south-east lobe hotspot is in fact a triple hotspot, which may point to an intermittent source activity. Also, the spectral index map of 3C 236 shows that the spectral steepening at the inner region of the northern lobe is prominent at low frequencies. The outer regions of both lobes show spectral flattening, in contrast with previous high frequency studies. We derive spectral age estimates for the lobes, as well as particle densities of the IGM at various locations. We propose that the morphological differences between the lobes are driven by variations in the ambient medium density as well as the source activity history
    • 

    corecore