14 research outputs found
A connectome and analysis of the adult Drosophila central brain.
The neural circuits responsible for animal behavior remain largely unknown. We summarize new methods and present the circuitry of a large fraction of the brain of the fruit fly Drosophila melanogaster. Improved methods include new procedures to prepare, image, align, segment, find synapses in, and proofread such large data sets. We define cell types, refine computational compartments, and provide an exhaustive atlas of cell examples and types, many of them novel. We provide detailed circuits consisting of neurons and their chemical synapses for most of the central brain. We make the data public and simplify access, reducing the effort needed to answer circuit questions, and provide procedures linking the neurons defined by our analysis with genetic reagents. Biologically, we examine distributions of connection strengths, neural motifs on different scales, electrical consequences of compartmentalization, and evidence that maximizing packing density is an important criterion in the evolution of the fly's brain
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Characteristics of Adults in the Hepatitis B Research Network in North America Reflect Their Country of Origin and Hepatitis B Virus Genotype
Chronic hepatitis B virus (HBV) infection is an important cause of cirrhosis and hepatocellular carcinoma worldwide; populations that migrate to the US and Canada might be disproportionately affected. The Hepatitis B Research Network (HBRN) is a cooperative network of investigators from the United States and Canada, created to facilitate clinical, therapeutic, and translational research in adults and children with hepatitis B. We describe the structure of the network and baseline characteristics of adults with hepatitis B enrolled in the network
Room-temperature susceptometry predicts biopsy-determined hepatic iron in patients with elevated serum ferritin
Background. There is an ongoing clinical need for novel methods to measure hepatic iron content (HIC) noninvasively. Both magnetic resonance imaging (MRI) and superconducting quantum interference device (SQUID) methods have previously shown promise for estimation of HIC, but these methods can be expensive and are not widely available. Room-temperature susceptometry (RTS) represents an inexpensive alternative and was previously found to be strongly correlated with HIC estimated by SQUID measurements among patients with transfusional iron overload related to thalassemia. Aim. The goal of the current study was to examine the relationship between RTS and biochemical HIC measured in liver biopsy specimens in a more varied patient cohort.Material and methods. Susceptometry was performed in a diverse group of patients with hyperferritinemia due to hereditary hemochromatosis (HHC) (n = 2), secondary iron overload (n = 3), nonalcoholic fatty liver disease (NAFLD) (n = 2), and chronic viral hepatitis (n = 3) within one month of liver biopsy in the absence of iron depletion therapy.Results. The correlation coefficient between HIC estimated by susceptometry and by biochemical iron measurement in liver tissue was 0.71 (p = 0.022). Variance between liver iron measurement and susceptometry measurement was primarily related to reliance on the patient’s body-mass index (BMI) to estimate the magnetic susceptibility of tissue overlying the liver.Conclusions. We believe RTS holds promise for noninvasive measurement of HIC. Improved measurement techniques, including more accurate overlayer correction, may further improve the accuracy of liver susceptometry in patients with liver disease
Lipopolysaccharide from enterohemorrhagic Escherichia coli binds to platelets through TLR4 and CD62 and is detected on circulating platelets in patients with hemolytic uremic syndrome
This study presents evidence that human platelets bind lipopolysaccharide (LPS) from enterohemorrhagic Escherichia coli (EHEC) through a complex of toll-like receptor 4 (TLR4) and CD62, leading to their activation. TLR4 colocalized with CD62 on the platelet membrane, and the TLR4 specificity of LPS binding to platelets was confirmed using C57BL/10ScN mice lacking Tlr4. Only platelets from TLR4 wild-type mice bound O157LPS in vitro. After in vivo injection, O157LPS bound to platelets from wild-type mice, which had lower platelet counts than did mice lacking TLR4. Mouse experiments confirmed that O157LPS binding to TLR4 is the primary event leading to platelet activation, as shown by CD40L expression, and that CD62 further contributes to this process. Activation of human platelets by EHEC-LPS was demonstrated by expression of the activated GPIIb/IIIa receptor, CD40L, and fibrinogen binding. In perfusion experiments, platelet activation on endothelial cells was TLR4 and CD62 dependent. O157LPS was detected on platelets from 12 of 14 children with EHEC-associated hemolytic uremic syndrome (HUS) and on platelets from 2 children before the development of HUS but not on platelets of EHEC-infected children in whom HUS did not develop (n = 3). These data suggest that O157LPS on platelets might contribute to platelet consumption in HUS. (Blood. 2006;108:167-176
Recommended from our members
A connectome and analysis of the adult Drosophila central brain.
The neural circuits responsible for animal behavior remain largely unknown. We summarize new methods and present the circuitry of a large fraction of the brain of the fruit fly Drosophila melanogaster. Improved methods include new procedures to prepare, image, align, segment, find synapses in, and proofread such large data sets. We define cell types, refine computational compartments, and provide an exhaustive atlas of cell examples and types, many of them novel. We provide detailed circuits consisting of neurons and their chemical synapses for most of the central brain. We make the data public and simplify access, reducing the effort needed to answer circuit questions, and provide procedures linking the neurons defined by our analysis with genetic reagents. Biologically, we examine distributions of connection strengths, neural motifs on different scales, electrical consequences of compartmentalization, and evidence that maximizing packing density is an important criterion in the evolution of the fly's brain
Recommended from our members
A connectome and analysis of the adult Drosophila central brain
The neural circuits responsible for animal behavior remain largely unknown. We summarize new methods and present the circuitry of a large fraction of the brain of the fruit fly Drosophila melanogaster. Improved methods include new procedures to prepare, image, align, segment, find synapses in, and proofread such large data sets. We define cell types, refine computational compartments, and provide an exhaustive atlas of cell examples and types, many of them novel. We provide detailed circuits consisting of neurons and their chemical synapses for most of the central brain. We make the data public and simplify access, reducing the effort needed to answer circuit questions, and provide procedures linking the neurons defined by our analysis with genetic reagents. Biologically, we examine distributions of connection strengths, neural motifs on different scales, electrical consequences of compartmentalization, and evidence that maximizing packing density is an important criterion in the evolution of the fly’s brain
Recommended from our members
Characteristics of Adults in the Hepatitis B Research Network in North America Reflect Their Country of Origin and Hepatitis B Virus Genotype
Background & aimsChronic hepatitis B virus (HBV) infection is an important cause of cirrhosis and hepatocellular carcinoma worldwide; populations that migrate to the United States and Canada might be affected disproportionately. The Hepatitis B Research Network (HBRN) is a cooperative network of investigators from the United States and Canada, created to facilitate clinical, therapeutic, and translational research in adults and children with hepatitis B. We describe the structure of the network and baseline characteristics of adults with hepatitis B enrolled in the network.MethodsThe HBRN collected data on the clinical characteristics of 1625 adults with chronic HBV infection who are not receiving antiviral therapy from 21 clinical centers in North America.ResultsHalf of the subjects in the HBRN are men, and the median age is 42 years; 72% are Asian, 15% are black, and 11% are white; with 82% born outside of North America. The most common HBV genotype was B (39%); 74% of subjects were negative for the hepatitis B e antigen. The median serum level of HBV DNA when the study began was 3.6 log10 IU/mL; 68% of male subjects and 67% of female subjects had alanine aminotransferase levels higher than the normal range.ConclusionsThe HBRN cohort is used to address important clinical and therapeutic questions for North Americans infected with chronic HBV and to guide health policies on HBV prevention and management in North America
Patient Sex, Reproductive Status, and Synthetic Hormone Use Associate With Histologic Severity of Nonalcoholic Steatohepatitis.
Background & aimsSex and sex hormones can affect responses of patients with nonalcoholic fatty liver disease (NAFLD) to metabolic stress and development of hepatocyte injury and inflammation.MethodsWe collected data from 3 large U.S. studies of patients with NAFLD (between October 2004 and June 2013) to assess the association between histologic severity and sex, menopause status, synthetic hormone use, and menstrual abnormalities in 1112 patients with a histologic diagnosis of NAFLD. We performed logistic or ordinal logistic regression models, adjusting for covariates relevant to an increase of hepatic metabolic stress.ResultsPremenopausal women were at an increased risk of lobular inflammation, hepatocyte ballooning, and Mallory-Denk bodies than men and also at an increased risk of lobular inflammation and Mallory-Denk bodies than postmenopausal women (P < .01). Use of oral contraceptives was associated with an increased risk of lobular inflammation and Mallory-Denk bodies in premenopausal women, whereas hormone replacement therapy was associated with an increased risk of lobular inflammation in postmenopausal women (P < .05).ConclusionsBeing a premenopausal woman or a female user of synthetic hormones is associated with increased histologic severity of hepatocyte injury and inflammation among patients with NAFLD at given levels of hepatic metabolic stress