5,338 research outputs found

    Latest Overseas Policy on Coronavirus Disease 2019 Vaccination for Children Aged 5 to 11

    Get PDF
    In Korea, children aged 5 to 11 have been vaccinated against coronavirus disease 2019 (COVID-19) from March 2022. Due to this age group not being at a high risk of developing severe COVID-19 symptoms, each major country has different, circumstance dependent, immunization policies for children. In this review, the COVID-19 vaccination policies for 5–11 years old children in major countries were reviewed and considerations were presented for Korea, where children 5–11 years old are starting to get vaccinated against COVID-19

    Emergence of robust 2D skyrmions in SrRuO3 ultrathin film without the capping layer

    Full text link
    Magnetic skyrmions have fast evolved from a novelty, as a realization of topologically protected structure with particle-like character, into a promising platform for new types of magnetic storage. Significant engineering progress was achieved with the synthesis of compounds hosting room-temperature skyrmions in magnetic heterostructures, with the interfacial Dzyaloshinskii-Moriya interactions (DMI) conducive to the skyrmion formation. Here we report findings of ultrathin skyrmion formation in a few layers of SrRuO3 grown on SrTiO3 substrate without the heavy-metal capping layer. Measurement of the topological Hall effect (THE) reveals a robust stability of skyrmions in this platform, judging from the high value of the critical field 1.57 Tesla (T) at low temperature. THE survives as the field is tilted by as much as 85 degrees at 10 Kelvin, with the in-plane magnetic field reaching up to 6.5 T. Coherent Bragg Rod Analysis, or COBRA for short, on the same film proves the rumpling of the Ru-O plane to be the source of inversion symmetry breaking and DMI. First-principles calculations based on the structure obtained from COBRA find significant magnetic anisotropy in the SrRuO3 film to be the main source of skyrmion robustness. These features promise a few-layer SRO to be an important new platform for skyrmionics, without the necessity of introducing the capping layer to boost the spin-orbit coupling strength artificially.Comment: Supplementary Information available upon reques

    Emergence of robust 2D skyrmions in SrRuO3 ultrathin film without the capping layer

    Get PDF
    Magnetic skyrmions have fast evolved from a novelty, as a realization of topologically protected structure with particle-like character, into a promising platform for new types of magnetic storage. Significant engineering progress was achieved with the synthesis of compounds hosting room-temperature skyrmions in magnetic heterostructures, with the interfacial Dzyaloshinskii-Moriya interactions (DMI) conducive to the skyrmion formation. Here we report findings of ultrathin skyrmion formation in a few layers of SrRuO3 grown on SrTiO3 substrate without the heavy-metal capping layer. Measurement of the topological Hall effect (THE) reveals a robust stability of skyrmions in this platform, judging from the high value of the critical field 1.57 Tesla (T) at low temperature. THE survives as the field is tilted by as much as 85 degrees at 10 Kelvin, with the in-plane magnetic field reaching up to 6.5 T. Coherent Bragg Rod Analysis, or COBRA for short, on the same film proves the rumpling of the Ru-O plane to be the source of inversion symmetry breaking and DMI. First-principles calculations based on the structure obtained from COBRA find significant magnetic anisotropy in the SrRuO3 film to be the main source of skyrmion robustness. These features promise a few-layer SRO to be an important new platform for skyrmionics, without the necessity of introducing the capping layer to boost the spin-orbit coupling strength artificially.Comment: Supplementary Information available upon reques

    Electrogenic transport and K(+) ion channel expression by the human endolymphatic sac epithelium.

    Get PDF
    The endolymphatic sac (ES) is a cystic organ that is a part of the inner ear and is connected to the cochlea and vestibule. The ES is thought to be involved in inner ear ion homeostasis and fluid volume regulation for the maintenance of hearing and balance function. Many ion channels, transporters, and exchangers have been identified in the ES luminal epithelium, mainly in animal studies, but there has been no functional study investigating ion transport using human ES tissue. We designed the first functional experiments on electrogenic transport in human ES and investigated the contribution of K(+) channels in the electrogenic transport, which has been rarely identified, even in animal studies, using electrophysiological/pharmacological and molecular biological methods. As a result, we identified functional and molecular evidence for the essential participation of K(+) channels in the electrogenic transport of human ES epithelium. The identified K(+) channels involved in the electrogenic transport were KCNN2, KCNJ14, KCNK2, and KCNK6, and the K(+) transports via those channels are thought to play an important role in the maintenance of the unique ionic milieu of the inner ear fluid

    Enhanced spin density wave in LaOFeSb

    Full text link
    We predict atomic, electronic, and magnetic structures of a hypothetical compound LaOFeSb by first-principles density-functional calculations. It is shown that LaOFeSb prefers a stripe-type antiferromagnetic phase (i.e., spin density wave (SDW) phase) to the non-magnetic (NM) phase, with a larger Fe spin moment and greater SDW-NM energy difference than those of LaOFeAs. The SDW phase is found to favor the orthorhombic structure while the tetragonal structure is more stable in the NM phase. In the NM-phase LaOFeSb, the electronic bandwidth near the Fermi energy is reduced compared with LaOFeAs, indicating smaller orbital overlap between Fe dd states and subsequently enhanced intra-atomic exchange coupling. The calculated Fermi surface in the NM phase consists of three hole and two electron sheets, and shows increased nesting between two hole and two electron sheets compared with LaOFeAs. Monotonous changes found in our calculated material properties of LaOFePn (Pn=P, As, and Sb), along with reported superconducting properties of doped LaOFeP and LaOFeAs, suggest that doped LaOFeSb may have a higher superconducting transition temperature.Comment: 5 pages with 3 figures and 1 table, double colum

    Single-Copy Certification of Two-Qubit Gates without Entanglement

    Full text link
    A quantum state transformation can be generally approximated by single- and two-qubit gates. This, however, does not hold with noisy intermediate-scale quantum technologies due to the errors appearing in the gate operations, where errors of two-qubit gates such as controlled-NOT and SWAP operations are dominated. In this work, we present a cost efficient single-copy certification for a realization of a two-qubit gate in the presence of depolarization noise, where it is aimed to identify if the realization is noise-free, or not. It is shown that entangled resources such as entangled states and a joint measurement are not necessary for the purpose, i.e., a noise-free two-qubit gate is not needed to certify an implementation of a two-qubit gate. A proof-of-principle demonstration is presented with photonic qubits.Comment: 8 pages. arXiv admin note: text overlap with arXiv:1812.0208
    • …
    corecore