3,016 research outputs found

    Temperature dependence of the electronic structure of the J(eff)=12 Mott insulator Sr2IrO4 studied by optical spectroscopy

    Get PDF
    We investigated the temperature-dependent evolution of the electronic structure of the J(eff)=1/2 Mott insulator Sr2IrO4 using optical spectroscopy. The optical conductivity spectra sigma(omega) of this compound has recently been found to exhibit two d-d transitions associated with the transition between the J(eff)=1/2 and J(eff)=3/2 bands due to the cooperation of the electron correlation and spin-orbit coupling. As the temperature increases, the two peaks show significant changes resulting in a decrease in the Mott gap. The experimental observations are compared with the results of first-principles calculation in consideration of increasing bandwidth. We discuss the effect of the temperature change in the electronic structure of Sr2IrO4 in terms of local lattice distortion, excitonic effect, electron-phonon coupling, and magnetic ordering.open69575

    Parotid fistula secondary to suppurative parotitis in a 13-year-old girl: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>The most common cause of parotid fistula is trauma, followed by malignancy, operative complications (parotidectomy or rhytidectomy) and infection. Acute suppurative parotitis can rarely produce parotid fistula. There are various treatment options available, however it is necessary to standardize the treatment according to the duration of history and the patient's general condition.</p> <p>Case report</p> <p>A 13-year-old Indo-Caucasian girl presented to us with a two-year history of clear watery discharge from a wound just above and behind the angle of her right jaw. A diagnosis of salivary (parotid) fistula was made based on clinical examination and investigations. The parotid fistula was successfully managed.</p> <p>Conclusion</p> <p>Parotid fistula secondary to suppurative parotitis is rare and difficult to manage successfully. Meticulous dissection, complete excision of the fistulous tract with closure of the parotid fascia and layered closure of the incision followed by application of a post-operative pressure bandage, anticholinergic agents and antibiotics contribute significantly to the successful management of this difficult clinical condition.</p

    How and why DNA barcodes underestimate the diversity of microbial eukaryotes

    Get PDF
    Background: Because many picoplanktonic eukaryotic species cannot currently be maintained in culture, direct sequencing of PCR-amplified 18S ribosomal gene DNA fragments from filtered sea-water has been successfully used to investigate the astounding diversity of these organisms. The recognition of many novel planktonic organisms is thus based solely on their 18S rDNA sequence. However, a species delimited by its 18S rDNA sequence might contain many cryptic species, which are highly differentiated in their protein coding sequences. Principal Findings: Here, we investigate the issue of species identification from one gene to the whole genome sequence. Using 52 whole genome DNA sequences, we estimated the global genetic divergence in protein coding genes between organisms from different lineages and compared this to their ribosomal gene sequence divergences. We show that this relationship between proteome divergence and 18S divergence is lineage dependant. Unicellular lineages have especially low 18S divergences relative to their protein sequence divergences, suggesting that 18S ribosomal genes are too conservative to assess planktonic eukaryotic diversity. We provide an explanation for this lineage dependency, which suggests that most species with large effective population sizes will show far less divergence in 18S than protein coding sequences. Conclusions: There is therefore a trade-off between using genes that are easy to amplify in all species, but which by their nature are highly conserved and underestimate the true number of species, and using genes that give a better description of the number of species, but which are more difficult to amplify. We have shown that this trade-off differs between unicellular and multicellular organisms as a likely consequence of differences in effective population sizes. We anticipate that biodiversity of microbial eukaryotic species is underestimated and that numerous ''cryptic species'' will become discernable with the future acquisition of genomic and metagenomic sequences

    Single-Atom Gating of Quantum State Superpositions

    Full text link
    The ultimate miniaturization of electronic devices will likely require local and coherent control of single electronic wavefunctions. Wavefunctions exist within both physical real space and an abstract state space with a simple geometric interpretation: this state space--or Hilbert space--is spanned by mutually orthogonal state vectors corresponding to the quantized degrees of freedom of the real-space system. Measurement of superpositions is akin to accessing the direction of a vector in Hilbert space, determining an angle of rotation equivalent to quantum phase. Here we show that an individual atom inside a designed quantum corral can control this angle, producing arbitrary coherent superpositions of spatial quantum states. Using scanning tunnelling microscopy and nanostructures assembled atom-by-atom we demonstrate how single spins and quantum mirages can be harnessed to image the superposition of two electronic states. We also present a straightforward method to determine the atom path enacting phase rotations between any desired state vectors. A single atom thus becomes a real space handle for an abstract Hilbert space, providing a simple technique for coherent quantum state manipulation at the spatial limit of condensed matter.Comment: Published online 6 April 2008 in Nature Physics; 17 page manuscript (including 4 figures) + 3 page supplement (including 2 figures); supplementary movies available at http://mota.stanford.ed

    First step to facilitate long term and multi centre studies of shear wave elastography in solid breast lesions using a computer assisted algorithm

    Get PDF
    Purpose: Shear wave elastography (SWE) visualises the elasticity of tissue. As malignant tissue is generally stiffer than benign tissue, SWE is helpful to diagnose solid breast lesions. Until now, quantitative measurements of elasticity parameters have been possible only, while the images were still saved on the ultrasound imaging device. This work aims to overcome this issue and introduces an algorithm allowing fast offline evaluation of SWE images. Methods: The algorithm was applied to a commercial phantom comprising three lesions of various elasticities and 207 in vivo solid breast lesions. All images were saved in DICOM, JPG and QDE (quantitative data export; for research only) format and evaluated according to our clinical routine using a computer-aided diagnosis algorithm. The results were compared to the manual evaluation (experienced radiologist and trained engineer) regarding their numerical discrepancies and their diagnostic performance using ROC and ICC analysis. Results: ICCs of the elasticity parameters in all formats were nearly perfect (0.861–0.990). AUC for all formats was nearly identical for Emax{E}_{\mathrm{max}} and Emean{E}_{\mathrm{mean}} (0.863–0.888). The diagnostic performance of SD using DICOM or JPG estimations was lower than the manual or QDE estimation (AUC 0.673 vs. 0.844). Conclusions: The algorithm introduced in this study is suitable for the estimation of the elasticity parameters offline from the ultrasound system to include images taken at different times and sites. This facilitates the performance of long-term and multi-centre studies

    Universality of pseudogap and emergent order in lightly doped Mott insulators

    Get PDF
    It is widely believed that high-temperature superconductivity in the cuprates emerges from doped Mott insulators. The physics of the parent state seems deceivingly simple: The hopping of the electrons from site to site is prohibited because their on-site Coulomb repulsion U is larger than the kinetic energy gain t. When doping these materials by inserting a small percentage of extra carriers, the electrons become mobile but the strong correlations from the Mott state are thought to survive; inhomogeneous electronic order, a mysterious pseudogap and, eventually, superconductivity appear. How the insertion of dopant atoms drives this evolution is not known, nor whether these phenomena are mere distractions specific to hole-doped cuprates or represent the genuine physics of doped Mott insulators. Here, we visualize the evolution of the electronic states of (Sr1-xLax)2IrO4, which is an effective spin-1/2 Mott insulator like the cuprates, but is chemically radically different. Using spectroscopic-imaging STM, we find that for doping concentration of x=5%, an inhomogeneous, phase separated state emerges, with the nucleation of pseudogap puddles around clusters of dopant atoms. Within these puddles, we observe the same glassy electronic order that is so iconic for the underdoped cuprates. Further, we illuminate the genesis of this state using the unique possibility to localize dopant atoms on topographs in these samples. At low doping, we find evidence for much deeper trapping of carriers compared to the cuprates. This leads to fully gapped spectra with the chemical potential at mid-gap, which abruptly collapse at a threshold of around 4%. Our results clarify the melting of the Mott state, and establish phase separation and electronic order as generic features of doped Mott insulators.Comment: This version contains the supplementary information and small updates on figures and tex

    IL-12p40 Homodimer Ameliorates Experimental Autoimmune Arthritis

    Get PDF
    IL-23 is the key cytokine that induces the expansion of Th17 cells. It is composed of p19 and p40 subunits of IL-12. The p40 subunit binds competitively to the receptor of IL-23 and blocks its activity. Our aim was to assess the preventive and therapeutic effect of the IL-12p40 homodimer (p40)(2) subunit in autoimmune arthritis animal models. In the current study, using IL-1R antagonist-knockout mice and a collagen-induced arthritis model, we investigated the suppressive effect of (p40)(2) on inflammatory arthritis. We demonstrated that the recombinant adenovirus-expressing mouse (p40)(2) model prevented the development of arthritis when given before the onset of arthritis. It also decreased the arthritis index and joint erosions in the mouse model if transferred after arthritis was established. (p40)(2) inhibited the production of inflammatory cytokines and Ag-specific T cell proliferation. It also induced CD4(+)CD25(+)Foxp3 regulatory T (Treg) cells in vitro and in vivo, whereas the generation of retinoic acid receptor-related organ receptor gamma t and Th17 cells was suppressed. The induction of Treg cells and the suppression of Th17 cells were mediated via activated STAT5 and suppressed STAT3. Our data suggest that (p40)(2) suppressed inflammatory arthritis successfully. This could be a useful therapeutic approach in autoimmune arthritis to regulate the Th17/Treg balance and IL-23 signaling.1156Ysciescopu

    Developing an award program for children's settings to support healthy eating and physical activity and reduce the risk of overweight and obesity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This paper aimed to identify the best way to engage, motivate and support early childhood services (ECS) and primary schools (PS) to create policy and practise changes to promote healthy eating and physical activity. This information would be used to develop a suitable program to implement within these children's settings to reduce the risk of childhood overweight and obesity.</p> <p>Methods</p> <p>The Medical Research Council's (UK) framework for the design and evaluation of complex interventions was used to guide the development of the healthy eating and physical activity program suitable for ECS and PS. Within this framework a range of evaluation methods, including stakeholder planning, in-depth interviews with ECS and PS staff and acceptability and feasibility trials in one local government area, were used to ascertain the best way to engage and support positive changes in these children's settings.</p> <p>Results</p> <p>Both ECS and PS identified that they had a role to play to improve children's healthy eating and physical activity. ECS identified their role in promoting healthy eating and physical activity as important for children's health, and instilling healthy habits for life. PS felt that these were health issues, rather than educational issues; however, schools saw the link between healthy eating and physical activity and student learning outcomes. These settings identified that a program that provides a simple guide that recognises good practise in these settings, such as an award scheme using a health promoting schools approach, as a feasible and acceptable way for them to support children's healthy eating and physical activity.</p> <p>Conclusion</p> <p>Through the process of design and evaluation a program - <it>Kids - 'Go for your life'</it>, was developed to promote and support children's healthy eating and physical activity and reduce the risk of childhood overweight and obesity. <it>Kids - 'Go for your life' </it>used an award program, based on a health promoting schools approach, which was demonstrated to be a suitable model to engage ECS and PS and was acceptable and feasible to create policy and practise changes to support healthy eating and physical activity for children.</p
    corecore